GE Grid Solutions

Proven, State-of-the-Art Protection & Control Systems

From the power plant to the power consumer, the Multilin™ UR & UR^{Plus} family of advanced protection and control relays provides one integrated platform that delivers leading edge protection, control, monitoring & metering solutions for critical power system applications. Featuring proven protection algorithms, expandable I/O, integrated monitoring & high accuracy metering capabilities with the latest in communications technologies, the Multilin UR & UR^{Plus} family of devices provides the situational awareness needed for a reliable, secure and efficient modern grid.

Key Benefits

- Modular construction: common hardware, reduced stock of pare parts, plug & play modules for maintenance cost savings and simplification (Multilin UR)
- Proven flexibility and customization capabilities make the Multilin UR/UR^{Plus} devices suitable to retrofit almost any kind of legacy P&C scheme
- Large HMI and annunciator panels provide local monitoring & control capabilities, and backup the substation HMI
- Phase measurement Unit (synchrophasors) according to IEEE® C37.118 (2011) and IEC® 61850-90-5 directly streamed from your protective device
- Embedded IEEE 1588 Time Synchronization Protocol support eliminates dedicated IRIG-B wiring requirements for P&C devices (Multilin UR)
- Advanced IEC 61850 Ed. 1 and Ed. 2 certified implementation, complete settings via SCL files and comprehensive process bus support (IEC 61850-9-2LE or IEC 61869 or IEC 61850-9-2 Hardfiber) ensures interoperability, device managing optimization and reduced cost of ownership
- Routable GOOSE (R-GOOSE) enables customer to send GOOSE messages beyond the substation, which enables WAPC and more cost effective communication architectures for wide area applications
- Increased network availability via failover time reduced to zero through IEC[®] 62439-3 "PRP" support
- Supports IEEE C37.111-1999/2013, IEC 60255-24 Ed 2.0 COMTRADE standard

Applications

- Protection, control, monitoring and supervision of power assets across generation, transmission, distribution, substation and industrial systems
- Utility substation and industrial plant automation
- Digital fault recording and Sequence of Event (SOE) recording
- Predictive maintenance through data analysis and trending
- Synchrophasors based monitoring and control system with specialized PMU devices that support multiple feeders providing P&M class synchrophasors of voltage, current, and sequence components
- Complex protection & control and wide area monitoring solutions with complete diagnostic and automation capabilities (Multilin UR^{Plus})

Protection and Control

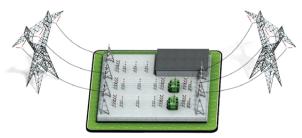
- Fast, segregated line current differential & distance protection functionality in one device
- Phase distance (5 zones) with independent settings for compensation
- Single-pole tripping, breaker-and-a-half with independent current source support
- Comprehensive generator protection with 100% stator and field ground fault detection
- Protection and control functionality in one box, reducing the number of devices
- Integrated large, full color display, for real-time visualization and control of the protected bay

Advanced Communications

- 3 independent Ethernet ports for simultaneous & dedicated network connections with IEEE 1588 support
- IEC 61850-9-2LE/IEC 61869 networked or IEC61850-9-2 Hardfiber process bus support

Cyber Security

• CyberSentry[™] provides high-end cyber security aligned to industry standards and services (NERC[®] CIP, AAA, Radius, RBAC, Syslog)


Monitoring & Metering

- Advanced recording capabilities, configurable & extended waveform capture and data logger
- Fault locator fault reports & programmable
- Breaker condition monitoring including breaker arcing current (I2t), breaker re-strike and breaker flashover
- Metering: current, voltage, power factor, frequency, voltage & current harmonics, energy, demand, phasors, etc.

UR & UR^{Plus} Market Offerings

Generation

G60

Medium to Large Generators

The G60 provides comprehensive primary and backup protection for medium and large generators, including large steam and combustion turbines, combined-cycle generators and multi-circuit hydro units. The G60 includes advanced automation and communication capabilities, extensive I/O options, and powerful fault recording features that simplify postmortem analysis and minimize generator downtime.

G30

Combined Generator & Transformer Protection

The G30 is a flexible system that can be used on small and medium generators, generator and step-up transformer arrangements or backup protection of large generators. Similar to the G60, the G30 also offers comprehensive protection and monitoring elements.

Transmission & Distribution

$D90^{\mathsf{Plus}}$

Sub-Cycle Distance Protection

The D90^{Plus} is ideally suited for application on transmission lines where fast fault detection and small breaker failure margin are required. The D90^{Plus} allows transmission limits to be maintained or even increased while respecting the transient stability limits of the power system.

D60

Fully Featured Distance Protection

The D60 is the ideal solution for providing reliable and secure primary and backup protection of transmission lines supporting: series compensation, teleprotection schemes, five mho or quad distance zones, single or three-pole tripping, breaker-and-half with independent current inputs, phasor measurement units (PMUs), and more.

D30

Backup Distance Protection

The D30 is the cost-effective choice for the primary protection of sub-transmission systems or backup protection of transmission systems. Using FlexLogic™ elements, basic pilot schemes can be programmed. The D30 has complementary protection, control, communication, monitoring and metering functions that meet the toughest requirements of the market.

L90

Complete Line Protection

The L90 is a fast and powerful high-end phase-segregated line current differential and complete distance protection system, suitable for MV cables, two or three terminal transmission lines having breaker-and-half and single or three-pole tripping schemes.

L60

Line Phase Comparison Protection

The L60 is an extremely fast line phase comparison system, suitable for two or three terminal transmission lines. This system is able to operate using power line carrier or fiber optic communications.

L30

Sub-Transmission Line Current Differential Protection

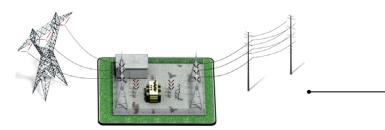
The L30 is a cost-effective phase-segregated line current differential system intended to provide primary protection for MV cables and two/ three-terminal sub-transmission lines or backup protection to transmission lines.

B90

Centralized or Distributed Busbar Prot

The B90 is an advanced low-impedance differential protection system that is intended to cover applications ranging from small to large substations, having either single or complex-split busbar schemes. It is able to support busbars with up to 24 breakers, and 4 single phase differential zones.

B30


Centralized or Distributed Busbar Prot

The B30 is a cost-effective, advanced protection system that fits busbars with up to 6 circuits and two zones (centralized schemes) or 16 circuits and six zones (distributed schemes). The B30 provides advanced elements like CT trouble, directional and CT saturation, breaker failure and voltage supervision that make the B30 an extremely fast and secure busbar protection system. B30 also fits conventional centralized or process bus based distributed bus bar protectionschemes.

B95^{Plus}

Distributed Busbar Protection System

The B95^{Plus} is GE's distributed busbar solution that can be applied to any kind of busbar configuration and uses standard IEC 61850 protocol to connect to the bay units. The B95^{Plus} delivers comprehensive and reliable protection for busbar applications with up to 24 feeders.

Transmission & Distribution (Continued)

F60

Feeder Protection with Hi-Z Fault Detection

The F60 provides comprehensive feeder protection, control, advanced communications, monitoring and metering in an integrated, economical, and compact package and more.

F35

Multiple Feeder Protection

The F35 is a cost-effective device for primary feeder protection. F35's modular design allows customers to protect groups of feeders as follows: independent current and voltage inputs, independent current and common voltage inputs or independent current inputs only.

C70

Capacitor Bank Protection

The C70 is an integrated protection, control, and monitoring device for shunt capacitor banks. The current and voltage-based protection functions are designed to provide sensitive protection for grounded, ungrounded single and parallel capacitor banks and banks with taps.

T60

Medium to Large Transformers

The T60 is a fully featured transformer protection system suitable for power transformers of any size that require current differential function. The T60 provides automatic or user-definable magnitude reference winding selection for CT ratio matching, and performs automatic phase shift compensation for all types of transformer winding connections.

T35

Basic Transformer Protection, Multiple CTs

The T35 is a basic transformer protection system capable of protecting combined main power transformers and up to five feeders downstream. The T35 provides automatic or user-definable magnitude reference winding selection for CT ratio matching, automatic phase shift compensation and allows users to enable removal of the zero-sequence current even for delta connected transformer windings.

C90^{Plus}

Breaker Automation and Controller

The C90^{Plus} is a powerful logic controller designed to be used in substation environments and for the unique automation requirements of industrial and utility power systems. The C90^{Plus} provides unmatched logic processing ability combined with a powerful math engine with deterministic execution of logic equations regardless of the configuration of the number of lines of logic.

C60

Breaker Controller

The C60 is a substation hardened controller that provides a complete integrated package for the protection, control, and monitoring of circuit breakers, supporting dual-breaker busbar configurations, such as breaker-and-half or ring bus schemes.

C30

I/O Logic Controller

The C30 is designed to perform substation control logic that can also expand the I/O capability of protection devices and replace existing Sequence of Events (SOE) recorders.

Industrial & Network

M60

Motor Protection

The M60 offers comprehensive protection and control solutions for large-sized three-phase motors. The M60 provides superior protection, control, and diagnostics that includes thermal model with RTD and current unbalance biasing, stator differential, reverse and low forward power, external RRTD module, two-speed motors, reduced voltage starting, broken rotor bar detection, and more.

N60

Network Stability and Synchrophasor Measurement

The N60 is intended to be used on load shedding, remedial action, special protection and wide area monitoring and control schemes. Like no one device before, the N60 shares real-time operational data to remote N60s so the system can generate intelligent decisions to maintain power system operation.

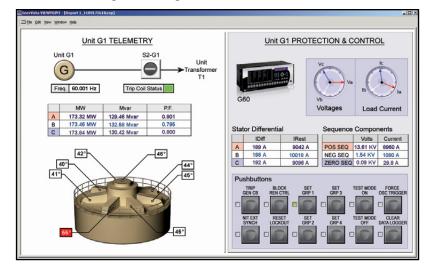
Overview

The Universal Relay (UR) is a family of leading edge protection and control products built on a common modular platform. All UR products feature high-performance protection, expandable I/O options, integrated monitoring and metering, high-speed communications, and extensive programming and configuration capabilities. The UR forms the basis of simplified power management for the protection of critical assets, either as a stand-alone device or within an overall power automation system.

The UR is managed and programmed through EnerVista Launchpad. This powerful software package, which is included with each relay, not only allows the setpoints of the relay to be programmed, but also provides the capability to manage setpoint files, automatically access the latest versions of firmware/documentation and provide a window into the substation automation system.

The UR can be supplied in a variety of configurations and is available as a 19-inch rack horizontal mount unit or a reduced size (¾) vertical mount unit. The UR consists of the following modules: power supply, CPU, CT/VT input, digital input/output, transducer input/output, inter-relay communications, communication switch and IEC 61850 Process Bus. All hardware modules and software options can be specified at the time of ordering.

Protection and Control


The UR incorporates the most complete and unique protection algorithms to provide unparalleled security and system uptime. The UR selector guide (in the following pages) lists all the protection elements found in each relay.

To support the protection and control functions of the UR, various types and forms of I/O are available (specific capabilities are model dependent). Supported I/Os include:

CTs and VTs

Up to 24 analog current transformer (CT) and voltage transformer (VT) signals can be configured to monitor AC power lines. Both 1 A and 5 A CTs are supported. Special function modules are available including: a CT module with sensitive ground input to provide ground fault protection on high-impedance grounded systems, and a high-impedance fault detection module that provides fast and reliable detection of faults caused by downed conductors.

UR - Protection, Metering, Monitoring and Control

The UR is the single point for protection, control, metering, and monitoring in one integrated device that can easily be connected directly into DCS or SCADA monitoring and control systems like Viewpoint Monitoring as shown.

Digital I/O

Up to 120 contact inputs (with utility voltage rating up to 250V), and up to 72 contact outputs, are available and can be used to monitor and control a wide range of auxiliary equipment found within a substation or other protection application. Types of digital I/O cards include trip-rated Form-A, Form-C, Fast Form-C, latching and Solid State Relay (SSR), with or without DC voltage, current monitoring and isolated inputs (with auto burnish feature). Mechanically latching outputs can be used to develop secure interlocking applications and replace mechanical switches and lockout relays. Form-A digital outputs have activation speeds of less than 4ms and both wet and dry contacts are supported.

Solid state output modules with high current breaking capability, fast tripping and reset time are ideal for direct tripping applications.

Transducer I/O

RTDs and DCmA cards are available to monitor system parameters, such as temperature, vibration, pressure, wind speed, and flow. Analog outputs can be used for hardwired connections from the controller to a SCADA system, to a programmable logic controller (PLC), or to other user interface devices (eg. panel display).

Advanced Automation

The UR incorporates advanced automation features including powerful FlexLogic programmable logic, communication, and SCADA capabilities that far surpass what is found in the average protection relay. Each UR can be seamlessly integrated with other UR relays for complete system protection and control.

FlexLogic

FlexLogic is the powerful UR-platform programming logic engine that provides the ability to create customized protection and control schemes, minimizing the need and associated costs of, auxiliary components and wiring. With 1024 lines of FlexLogic, the UR can be programmed to provide the required tripping logic along with custom scheme logic for breaker control (including interlocking with external synchronizers), transfer tripping schemes for remote breakers and dynamic setting group changes.

Scalable Hardware

The UR is available with a multitude of I/O configurations to suit the most demanding application needs. The expandable modular design allows for easy configuration and future upgrades.

- Multiple CT/VT configurations allow for the implementation of many different schemes, including concurrent split-phase and differential protection
- Flexible, modular high density I/O covering a broad range of input signals and tripping schemes with trip rated Form-A for high density outputs and Trip rated Form A, SSR, Form-C and mechanically latched relays for normal outputs
- Inter-relay communications module that enables the sharing of digital status and analog values between UR relays for control, fast tripping or teleprotection applications

	Ready to Capture	Mem	ory Available
Fault Report	0		0
Transient Recorder	0		0
Disturbance Recorder	•		0
Records	Latest	Total	
Events	Mar 05 2009 12:23:23:637727	431	
Faults	Mar 05 2009 12:23:20:735543	1	
Transients	Mar 05 2009 12:23:20:721634	1	
Disturbances	Mar 04 2009 02:47:12:346789	3	

Digital fault recorder summary with the latest information on the events, faults, transients and disturbances.

- Types of digital outputs include trip-rated Form-A and SSR mechanically latching, and Form-C outputs
- Form-A and SSR outputs available with optional circuit continuity monitoring and current detection to verify continuity and health of the associated circuitry
- IEC 61850 Process Bus delivering advanced protection and control capabilities while providing significant savings on the total life cost of electrical substations
- RTDs and DCmA inputs are available to monitor equipment parameters such as temperature and pressure

Monitoring and Metering

The UR includes high accuracy metering and recording for all AC signals. Voltage, current, and power metering are built into the relay as a standard feature. Current and voltage parameters are available as total RMS magnitude, and as fundamental frequency magnitude and angle.

Fault and Disturbance Recording

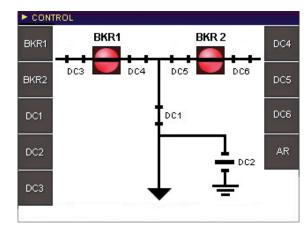
The advanced disturbance and event recording features within the UR can significantly reduce the time needed for postmortem analysis of power system events and the creation of regulatory reports. Recording functions include:

- Sequence of Event (SOE)
 - 1024 time stamped events (UR Relays)
 - 8192 time stamped events (URPlus)
- Oscillography
 - Supports IEEE C37.111-1999/2013, IEC 60255-24 Ed 2.0 COMTRADE standard
 - 128 digital & up to 56 analog channels Events with up to 45s length
- Data Logger and Disturbance Recording - 16 channels up to 1 sample/cycle/channel

 Fault Reports
 Powerful summary report of pre-fault and fault values

The very high sampling rate and large amounts of storage space available for data recording in the UR allows for the capture of complex events and can eliminate the need for installing costly stand-alone recording equipment.

Advanced Device Health Diagnostics


The UR performs comprehensive device health diagnostic tests at startup and continuously during run-time to test its own major functions and critical hardware. These diagnostic tests monitor for conditions that could impact security and availability of protection, and present device status via SCADA communications and front panel display. Providing continuous monitoring and early detection of possible issues help improve system uptime.

- Comprehensive device health diagnostic performed at startup
- Monitors the CT/VT input circuitry to validate the integrity of all signals
- Monitors internal DC voltage levels that allows for proactive maintenance and increased uptime

PMU - Synchrophasors

With the ability of having up to 6 PMU elements in one device, UR devices provide simultaneous data streams of up to four different clients.

UR devices exceed the IEEE C37.118 (2011) requirements for Total Vector Error (TVE) less than 1% over a range of 40Hz to 70Hz, and are able to measure and report synchrophasors over a frequency range from 30Hz to 90Hz with little effect on TVE.

Control screen for the preconfigured bay with breaker & disconnect control in multiple pages using dedicated pushbuttons in the front panel.

A special feature of the synchrophasor implementation is the ability to apply magnitude and phase angle correction on a per-phase basis for known CT and PT magnitude and phase errors. Selected UR devices can apply a phase correction on each phase of up to $\pm 5^{\circ}$ in increments of 0.05°. They also provide the ability to adjust for deltawye phase angle shifts or polarity reversal in the synchrophasor reporting of the voltage and current sequence components.

UR devices can stream PMU data through any of its three Ethernet ports using either IEEE C37.118 or IEC 61850-90-5 data formats. When streaming PMU data through a single port, a failover function can automatically switch the transmission over another Ethernet port.

Selected UR devices also support up to 16 userdefinable command outputs via the command frame defined in the IEEE C37.118 standard.

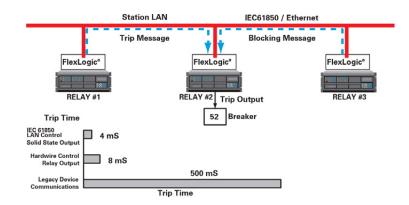
PMU recording

UR devices include high accuracy metering and recording for all AC signals. Voltage, current. frequency, power and energy and demand metering are built into the relay as a standard feature. Current and voltage parameters are available as total RMS magnitude, and as fundamental frequency magnitude and angle. UR devices have 12MB of synchrophasor recording memory with multiple recording and triggering options. The PMU recorder can be triggered by an over/under frequency, over/ under voltage, overcurrent, overpower, rate of change of frequency condition, or by a userspecified condition, freely configured through FlexLogic. The PMU status flag shows which of those functions triggered the PMU recorder.

Monitor Multiple Power Circuits

Selected UR devices can monitor from one up to six three-phase power circuits and can be configured to simultaneously provide as many as 6 PMUs. Other configurations are: three power circuits with independent currents and voltages, four power circuits with independent currents and two common voltages, five power circuits with independent current and one common voltage. UR devices provide metering of many power system quantities including active, reactive and apparent power on a per-phase, and three-phase basis, true RMS value, phasors and symmetrical components of currents, and voltages, power factor, and frequency. Frequency can be measured independently and simultaneously from up to six different signals including currents if needed. UR devices allow for the creation and processing of virtual sums of currents through its user configuration mechanism of "signal sources", and can also sum analog values through its FlexMath elements.

Communications


The UR provides advanced communications technologies for remote data and engineering access, making it easy and flexible to use and integrate into new and existing infrastructures. Direct support for fiber optic Ethernet provides high-bandwidth communications allowing for low-latency controls and high-speed file transfers of relay fault and event record information. The available redundant Ethernet option provides the means to create fault tolerant communication architectures in an easy, cost-effective manner without the need for intermediary communication hardware.

The UR supports the most popular industry standard protocols enabling easy, direct integration into DCS and SCADA systems.

- IEC 61850 Ed. 1 and Ed. 2 Station Bus, IEC 61850-2-2LE / IEC 61869 networked or IEC 61850-9-2 HardFiber Process Bus, and IEC 61850-90-5 PMU over GOOSE support
- DNP 3.0 (serial & TCP/IP)
- Ethernet Global Data (EGD)
- IEC 60870-5-103 and IEC 60870-5-104
- Modbus RTU, Modbus TCP/IP
- HTTP, TFTP
- IEEE 1588 and redundant SNTP for time synchronization
- PRP as per IEC 62439-3
- Supports Routable GOOSE (R-GOOSE)

Purpose Specific LAN

The available three independent Ethernet ports enable users to segregate heavy traffic (eg.

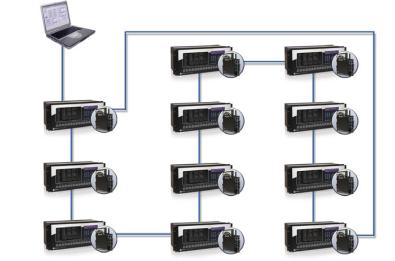
IEC 61850 protocol enables high-speed trip and control via the substation LAN without complex fixed wiring to many auxiliary devices.

synchrophasors) from mission critical services (eg. GOOSE), as a way to eliminate potential latency effects.

Precision Time Protocol - IEEE 1588

UR devices support the IEEE 1588 v2 (2012) time synchronization protocol that enables time synchronization via the substation LAN with no sacrifice on time accuracy (1 μ s). IEEE 1588 removes the dedicated IRIG-B wiring and repeaters used for time synchronization that are traditionally used in substations.

UR Switch Module

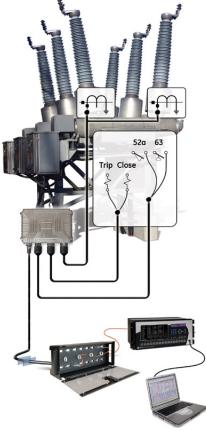

In addition to providing high-speed connectivity directly to the UR, the UR Switch Module provides an additional 4 fiber Ethernet ports, for connection to other relays in the system as well as upstream connectivity. It also provides 2 RJ45 copper Ethernet ports which can be used to connect local devices such as PCs, meters, or virtually anything else in the system. The UR Switch Module provides a simple way to add fully-managed Ethernet networking to your relays and devices without the need for additional hardware or a dedicated communications cabinet.

The UR Switch Module includes all the management and features that come with all MultiLink managed switches, and can be easily integrated into a network that has other Ethernet switches.

When used in a ring topology with other UR switch modules or MultiLink switches, the UR Switch Module can be configured to use MultiLink's Smart RSTP feature to provide industry-leading network recovery for ring topologies, at a speed of less than 5ms per switch.

Interoperability with Embedded IEC 61850 Ed. 1 and Ed. 2

Use the UR with integrated IEC 61850 to lower costs associated with system protection, control and automation. GE Digital Energy's leadership


The UR Switch Module is a fully-managed Ethernet switch with a modular form factor. It can be placed directly into a GE Multilin UR to provide Ethernet connectivity to the relay as well as other Ethernet-enabled devices.

in IEC 61850 comes from thousands of installed devices and follows on extensive development experience with UCA 2.0.

- Backup wired signals or replace expensive copper wiring between devices with direct transfer of data from up to 64 remote device using GOOSE messaging.
- Configure GE systems based on IEC 61850 and also monitor and troubleshoot them in real-time with EnerVista Viewpoint Engineer
- Multicast IEEE C37.118 synchrophasor data between PMU and PDC devices using IEC 61850-90-5
- R-GOOSE enable customer to send GOOSE messages beyond the substation, which enables WAPC and more cost effective communication architectures for wide area applications
- Implements, user selectable, Ed. 1 and Ed. 2 of the standard across the entire UR Family

LAN Redundancy

Substation LAN redundancy has been traditionally accomplished by reconfiguring the active network topology in case of failure. Regardless of the type of LAN architecture (tree, mesh, etc), reconfiguring the active LAN requires time to switchover, during which the LAN is unavailable. UR devices deliver redundancy as specified by PRP-IEC 62439-3,

IEC 61850 protocol enables high-speed trip and control via the substation LAN without complex fixed wiring to many auxiliary devices.

which eliminates the dependency on LAN reconfiguration and the associated switchover time. The UR becomes a dual attached node that transmits data packets over both main and redundant networks simultaneously, so in case of failure, one of the data packets will reach the receiving device with no time delay.

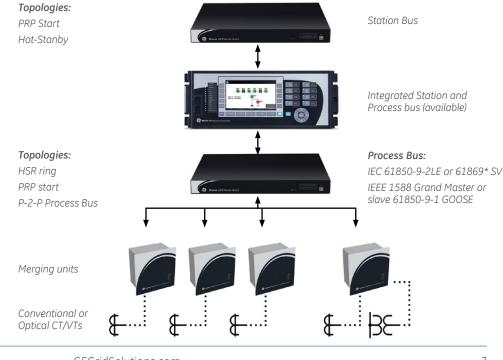
Direct I/O Messaging

Direct I/O allows for the sharing of analog or high-speed digital information between multiple UR relays via direct back-to-back connections or multiplexed through a standard DS0 multiplexer channel bank. Regardless of the connection method, direct I/O provides continuous real-time channel monitoring that supplies diagnostics information on channel health. Direct I/O provides superior relay-to-relay communications that can be used in advanced interlocking, generation rejection and other special protection schemes.

- Communication with up to 16 UR relays in single or redundant rings rather than strictly limited to simplistic point-to-point configurations between two devices
- Connect to standard DS0 channel banks through standard RS422, G.703 or IEEE C37.94 interfaces or via direct fiber optic connections
- No external or handheld tester required to provide channel diagnostic information

Multi-Language

UR devices support multiple languages: English, French, Russian, Chinese, Turkish, German, Polish and Japanese. These language options are available on the front panel, in the EnerVista setup software, and in the product manuals. Easily switch between English and an additional language on the local displays without uploading new firmware.


IEC 61869 and 61850-9-2LE Process Bus

Three UR process bus modules enable communicating to Merging Units "MU" that comply to either IEC 61869 standard or IEC 61850-9-2LE technical report. MUs connect to the primary asset and translate analog signals and digital status/commands to standard sample values "SV" data and GOOSE messages.

Flexibility for connecting to different network size and topology is granted through 100Mbps and/ or 1Gbps Ethernet port support, plus IEC 62439 PRP or HSR standard redundancy, plus Star, Ring and Point-to-point network support.

For time synchronization purposes, this Process bus module can become an IEEE 1588 slave clock (61850-9-3 profile) or a 1588 Grand Master clock which removes the need of external time sources connected to the process bus network.

Customers who may not be using GE MU devices, could use MU from other vendors. Interoperability with MU from other vendors is expected when they comply to the mentioned standards.

HardFiber IEC 61850 Process Bus

The HardFiber Process Bus System represents a true breakthrough in the installation and ownership of protection and control systems, by reducing the overall labor required for substation design, construction, and testing. This innovative solution addresses the three key issues driving the labor required for protection and control design, construction and testing:

- Every substation is unique, making design and drafting a one-off solution for every station
- Miles of copper wires need to be pulled, spliced and terminated
- Time-consuming testing and troubleshooting of thousands of connections must be performed by skilled personnel

The HardFiber Process Bus System was designed to address these challenges and reduce the overall labor associated with the tasks of designing, documenting, installing and testing protection and control systems. By specifically targeting copper wiring and all of the labor it requires, the HardFiber Process Bus System allows for greater utilization and optimization of resources with the ultimate goal of reducing the total life cost (TLC) for protection and control.

Cyber Security - CyberSentry UR

CyberSentry enables UR devices to deliver full cyber security features that help customers to comply with NERC CIP and NIST® IR 7628 cyber security requirements through supporting the following core features:

Password Complexity

Supporting up to 20 alpha- numeric or special characters, UR passwords exceed NERC CIP requirements for password complexity. Individual passwords per role are available.

AAA Server Support (Radius)

Enables integration with centrally managed authentication and accounting of all user activities and uses modern industry best practices and standards that meet and exceed NERC CIP requirements for authentication and password management.

Role Based Access Control (RBAC)

Efficiently administrate users and roles within UR devices. The new and advanced access functions allow users to configure up to eight roles for up to eight configurable users with independent passwords. The standard "Remote Authentication Dial In User Service" (Radius) is used for authentication.

Event Recorder (Syslog for SEM)

Capture all cyber security related events within a SOE element (login, logout, invalid password attempts, remote/local access, user in session, settings change, FW update, etc), and then serve and classify data by security level using standard Syslog data format. This enables UR devices to integrate with established SEM (Security Event Management) systems.

EnerVista Software

The EnerVista suite is an industry-leading set of software programs that simplifies every aspect of using the UR. The EnerVista suite provides all the tools to monitor the status of the protected asset, maintain the relay, and integrate information measured by the UR into DCS or SCADA monitoring systems. Convenient COMTRADE and SOE viewers are an integral part of the UR setup software included with every UR relay, to carry out postmortem event analysis and ensure proper protection system operation.

EnerVista Launchpad

EnerVista Launchpad is a powerful software package that provides users with all of the setup and support tools needed for configuring and maintaining GE Multilin products. The setup software within Launchpad allows for the configuration of devices in real-time by communicating using serial, Ethernet, or modem connections, or offline by creating setting files to be sent to devices at a later time.

Included in Launchpad is a document archiving and management system that ensures critical documentation is up-to-date and available when needed. Documents made available include:

- Manuals
- Brochures

FAO's

• Wiring Diagrams

Service Bulletins

- Application Notes
 and Support
 Documents
 - Guideform Specifications

Viewpoint Monitoring

Viewpoint Monitoring is a simple-to-use and full-featured monitoring and data recording software package for small systems. Similar to small SCADA systems, Viewpoint Monitoring provides a complete HMI package with the following functionality:

- Plug-&-Play Device Monitoring
- System Single-Line Monitoring & Control
- Annunciator Alarm Screens
- Trending Reports
- Automatic Event Retrieval
- Automatic Waveform Retrieval

Viewpoint UR Engineer

Viewpoint UR Engineer is a set of powerful tools that allows the configuration and testing of GE relays at a system level in an easy-touse graphical drag-and-drop environment. Viewpoint UR Engineer provides the following configuration and commissioning utilities:

- Graphical Logic Designer (Substation)
- Graphical System Designer
- Graphical Logic Monitor
- Graphical System Monitor (Substation)
- IEC 61850 Configurator

Viewpoint Maintenance

Viewpoint Maintenance provides tools that will create reports on the operating status of the relay, simplify the steps to download fault and event data, and reduce the work required for cyber security compliance audits. Tools available in Viewpoint Maintenance include:

- Settings Security Audit Report
- Device Health Report
- Single-Click Fault Data Retreival

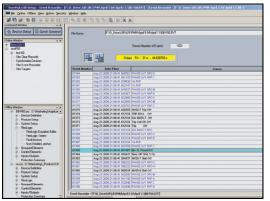
EnerVista Integrator

EnerVista Integrator is a toolkit that allows seamless integration of Multilin devices into new or existing automation systems. Included in EnerVista Integrator is:

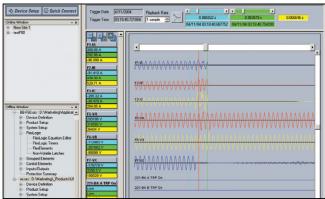
- OPC/DDE Server
- GE Multilin Drivers
- Automatic Event Retrieval
- Automatic Waveform Retrieval

User Interface

The UR front panel provides extensive local HMI capabilities. The local display is used for monitoring, status messaging, fault diagnosis, and device configuration. User-configurable messages that combine text with live data can be displayed when user-defined conditions are met. Configurable LEDs allows status and alarm signaling (50 LEDs).

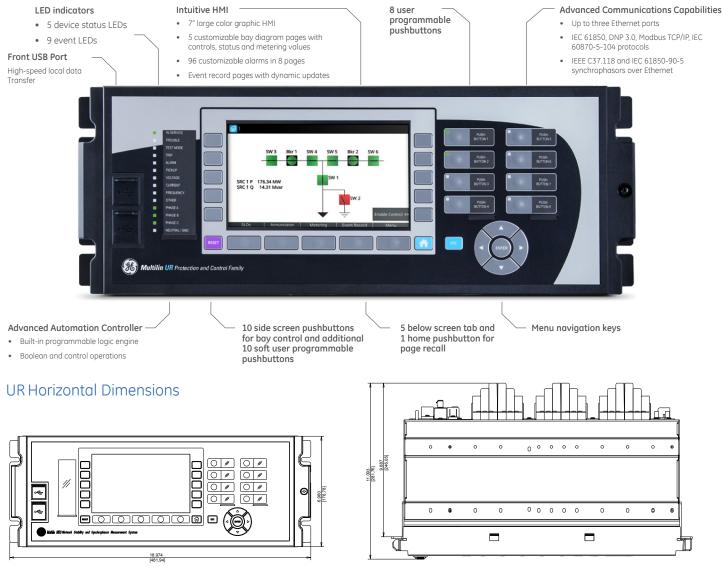

The UR^{Plus} and UR optionally has a color graphic HMI that allows users to have customizable bay diagrams with local monitoring of status, values and control functionality.

The alarm annunciator panel provides the configuration of up to 96 (UR) or 256 signals (UR $^{\rm Plus})$ (alarms and status) with full text description.


A 7" color, graphic HMI is optionally available that allows users to have customizable bay diagrams with local monitoring of status, values and control functionality. The alarm annunciator panel provides the configuration of up to 96 signals (alarms and status) with full text description.

Power System Troubleshooting

The UR contains many tools and reports that simplify and reduce the amount of time required for troubleshooting power system events, increase uptime and reduce loss of production.



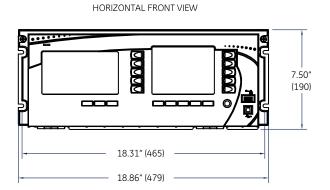
Record the operation of the internal UR elements and external connected devices with 1ms time-stamped accuracy to identify the Sequence of Operation of station devices during faults and disturbances.

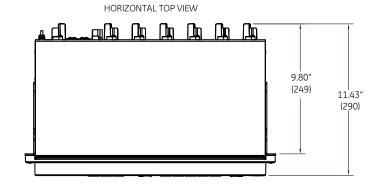
Analyze faults and disturbances using both analog and digital power system quantities.

UR Enhanced Front Panel with Large Display, Customizable LED Annunicator, and User-Programmable Pushbuttons

UR^{Plus} Front Panel with Large Color Display and Annunciator Panel

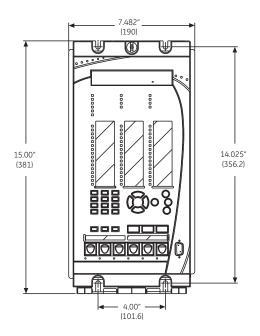
Digital Alarm Annunciator

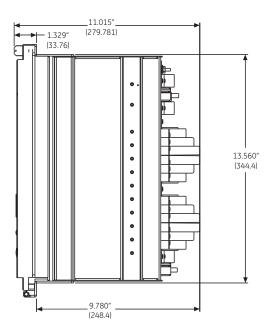

- 256 customizable alarms in multiple pages
- Eliminates the need for separate • annunciator
- Intuitive HMI
- Customizable bay diagrams for various . applications
- Local control and status indication of breakers & disconnect switches
- Local/remote control
- (20 programmable buttons)
- Fault, event, disturbance and transient reports


Advanced Control

- Customizable bay diagrams for various applications
- Local control and status indication of breakers & disconnect switches
- Local/remote control
- Fault, event, disturbance and transient reports

UR^{Plus} Dimensions




- events
- Synchrophasors PMU recording

UR Enhanced Front Panel - Vertical Faceplate

UR Vertical Dimensions

UR Family Selector Guide

Features	ANSI	B30	B90	B95 ^{Plus}	C30	C60	C70	C90 ^{Plus}	D30	D60	D90 ^{Plus}
Protection											
Disturbance Detector							•	•	•	•	•
Mho Distance, Phase (No. of Zones)	21P								5	5	5
Mho Distance, Ground or Neutral Phase (No. of Zones) Quadrilateral Distance, Phase (No. of Zones)	21G/N 21P								5	5	5
Quadrilateral Distance, Ground or Neutral (No. of Zones)	21G/N								5	5	5
Permissive Pilot Logic										•	•
Sub-Cycle Distance											•
Overexcitation Protection (V/Hz)	24										
Synchronism Check or Synchronizing	25					•		•	•	۰	•
Undervoltage, Phase	27P	•	•	•		•	•	•	•	•	•
Undervoltage, Auxiliary	27X					•		•	•	•	•
Stator Ground (3rd Harmonic) Sensitive Directional Power	27TN 32S					•		•			
Loss of Excitation – Based on Reactive Power	40Q										
Loss of Excitation – Based on Impedance Element	40										
Current Unbalance	46										
Broken Conductor Detection	46BC										
IOC, Negative Sequence	46/50						•	•	•	•	•
TOC, Negative Sequence Current Directional, Negative Sequence	46/51 46/67						•	•	•	•	•
Reverse Phase Sequence Voltage	40/07							•			
Thermal Model	49										
Inadvertent/Accidental Energization	50/27										
End of Fault Protection		•	٠	•							
Motor Mechanical Jam											
Motor Start Supervision Motor Acceleration Time											
User Programmable Curves		•				•	•	•	•	•	•
Breaker Failure	50BF		•	•		•	0	•	Logic	0	•
IOC, Phase	50P	•	•	•		•	٠	•	•	٠	•
IOC, Ground	50G	•				•	•	•	•	•	•
IOC, Neutral	50N	•				•	•	•		•	•
IOC, Sensitive Ground	50SG	•				•			•	۰	
High Impedance Fault Detection TOC, Phase	51P	•	•	•		•	•	•		•	•
TOC, Ground	51G	•	-	-		•	•	•	•	•	•
TOC, Neutral	51N	•				•	•	•	•	•	•
TOC, Sensitive Ground	51SG	•				•				•	
TOC, Voltage Restrained	51V	•				•	٠	•		•	•
Overvoltage, Phase	59P						•	•	•	•	•
Overvoltage, Auxiliary Overvoltage, Neutral	59A 59N	•				•	•	•	•	•	•
Negative Sequence Overvoltage	5910	•				•	•	•	•	•	•
100% Stator Ground Protection	64TN										-
Current Directional, Phase	67P							•	•	•	•
Current Directional, Neutral	67N							•	٠	۰	٠
Current Directional, Negative Sequence	46/67							•		•	•
Power Swing Blocking	68								•	•	•
Out-of-Step Tripping AC Reclosing (No. of Shots)	78 79					4		4	•	•	•
Switch on to Fault (Line Pickup)	SOTF					4		4	•	•	•
Voltage Transformer Fuse Failure	VTFF					•	•	•	•	•	•
Current Transformer Supervision	50/74	•	•	•							
Load Encroachment Logic									•	٠	•
Underfrequency	81U							•		•	•
Overfrequency	810							•		•	•
Anti-Islanding Protection/Frequency Rate of Change Lockout Functionality	81R 86	•	•	•	•	•	•	•	•	•	•
Bus Differential	87B	2	2	2	-	-	-		-	-	
Line Current Differential	87L	-	_	_							
Ground Differential	87G										
Stator Differential	87S										
Transformer Differential	87T										
Line Phase Comparison	87PC						•				
Voltage Differential Capacitor Bank Overvoltage							•				
Neutral Voltage Unbalance							•				
Automatic Voltage Regulation							•				
Time of Day Control							•				
Instantaneous Differential	50/87	•	•	•							
Split Phase Protection											
Line Current Differential Trip Logic											
CT Failure		•	٠								

Direct content Image is a set of a monethy	Features	F35	F60	G30	G60	L30	L60	L90	M60	N60	T35	T60
But before the drowed web statesNNNNNNNNContractione Contr	Protection											
Meeb action local shared heads in local shared he			٠			•	•	•		•		
Quadiational bias and b					3							
Rooteword Rooteword Ammale Point Lags Someword Some												
Ammain Plachage Decisional Place Decisional Pla												
Sub-Cycle Datana Demendiation Name Demendiation Name SynchroningImage Image Image Synchronic Data Synchroning Image Synchronic Data Synchroning Image Demendiation Name Synchronic Data Synchroning Image Demendiation Name Synchronic Data Synchroning Image Demendiation Name Demendiation							3					C
Orange Control Control partnersIII<												
UnderwateryIII <thi< th="">IIIII</thi<>				•	•							•
UnderweighImage <td>Synchronism Check or Synchronizing</td> <td></td> <td>۰</td> <td>٠</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td></td> <td>•</td> <td></td> <td>•</td>	Synchronism Check or Synchronizing		۰	٠	•	•	•	•		•		•
Store (and join forward conside in resource laword test of channels and any set of the	÷									•		
Senting black for the forward of the set of the se		•	•			•	•	•	•			•
Lises of Excision-Boyole miscule mixed Current Decision Regression			-							-		
Liss of carboxin - Board on regarance element Review Construction Detection Review Construction Detection Detection Review Construction Detection Detection Review Construction Detection Det			•	-					-			
Current bubbles fieldsCurrent bubbles fields									-			
Inc. tequeres Conceptive Sequence Conceptive Sequence Base Sequence Ba				•	٠				•			
TOC. Regards Sequence Convert Derictional Register Sequence Bareard May Sequence Derivational			0									
Convert Notes Requerce Visional Persons Proces Sequence Visional Persons Proces Persons Process Proc												
Reverse Pholes Sequence Voltage Incontential Accidencial Decognition Ender Actional Actional Accidencial Decognition Ender Actional A						•						
Them Model Deregation of the set	Reverse Phase Sequence Voltage		,						•			
End of callEndInd <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td>					•							•
Mote Short Species on Mote Acceleration TimeImage Species on Species Figure Support Species Figure Species Figure Support Species Figure Species				٠	٠							
Match Acceleration TimeImage												
Match Acceleration Time User Programmed GuivesInc. <td></td>												
User Programmable Curves••<												
Breaker failure (CC, PhoseLogic <thlogic< th="">Logic<thlogic< th="">LogicLogic</thlogic<></thlogic<>		•	•	•	•	•	•	•		•	•	•
IOC, Phase IOC, Sensitive Ground IOC, Sensitive Ground IOC, Neutral and Sensitive Ground IOC, Neutral and Sensitive Ground IOC, Neutral and Sensitive Ground IOC, Sensitive Ground IOC, Sensitive Ground IOC, Neutral and Sensitive Ground And Sensitive Ground IOC, Neutral And Sensitive Ground And Sensitiv		Logic		Logic	•	•	•	•	•	Logic	Logic	Logic
IOC, Nexture COC, Sensitive GroundIII </td <td>IOC, Phase</td> <td></td> <td>•</td> <td></td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td>	IOC, Phase		•		•	•	•	•	•			
IOC, Sensitive Ground••												
High Impedance Foulb Detection Impedance Fourboard Impedance Fourboard <td></td>												
TOC, Probe COC, GroundII <td></td> <td>•</td> <td></td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td></td> <td></td> <td>•</td>		•		•	•	•	•	•	•			•
TOC, Ground COC, Neutrol COC, Neutrol COC, Sensitive GroundIII <thi< th="">II<thi< th="">III<</thi<></thi<>					•	•	•	•	•			•
TOC. Sensitive Ground · <th< td=""><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td></th<>			•								•	
TOC, Voltage Restrained•• <t< td=""><td></td><td>٠</td><td>۰</td><td>•</td><td>٠</td><td>•</td><td>•</td><td>•</td><td>•</td><td></td><td></td><td>•</td></t<>		٠	۰	•	٠	•	•	•	•			•
Overvoltage, Phase Overvoltage, Neutral Overvoltage, NeutralImage: Neutral Image: Neutral Overvoltage, Neutral Overvoltage, Neutral Overvoltage, Neutral DMS Stator Ground ProtectionImage: Neutral Image: Neutral <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>												
Overvoltage, Auxiliary Overvoltage Negative Sequence OvervoltageIII <thi< th="">III<thi< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td></thi<></thi<>		•									•	
Oversolinge, Neutral Negative Sequence Oversolinge•• <th< td=""><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>•</td><td></td><td>-</td></th<>			-	-			-	-	-	•		-
Negative Sequence OvervoltageImage: Sequence Sequence SequenceImage: Sequence Sequence SequenceImage: Sequence Sequence SequenceImage: Sequence Se												-
100% Stater Ground ProtectionImage: Stater Ground Protect												
Current Directional, NeutralImage: Neutral Directional, Negative SequenceImage: Neutral Directional, Neutral Directiona, Neutral					•							
Current Directiond, Negative SequenceImage of the sequenceImag												
Power Swing BlockingImage Swing Blocking									•			•
Out-of-Step TrippingMMM			0	•								
AC Reclosing [No. of Shots]44 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>								-				
Switch on to Fault [Line Pickup]Image of the second se		4	4			4						
Current Transformer SupervisionImage: Supervision<												
Load Encroachment LogicImage: Sector of CongeImage: Sector		•	•	•	•				•	•		•
Underfrequency•••<						•						
OverfrequencyImage: sector of the	9						•	•		6		
Anti-Islanding Protection/Frequency Rate of ChangeII						•						
Lockout Functionality•• <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td></t<>								•				
Bus DifferentialImage: sector of the sector of		•					•		•		•	
Ground DifferentialImage: sector DifferentialImage:												
Stator DifferentialImage: state or DifferentialImag												
Transformer DifferentialImage: ComparisonImage: Comparison <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>•</td>			•			•		•				•
Line Phase Comparison Image: Sector Sect					•				•			
Voltage Differential Image: Differential							•					
Capacitor Bank Overvoltage Image: Sector	Voltage Differential											
Neutral Voltage Unbalance Image: Sector	Capacitor Bank Overvoltage											
Time of Day Control Image: Sector	Neutral Voltage Unbalance											
Instantaneous Differential Image: Split Phase Protection												
Split Phase Protection • • Image: Comparison of the system												
Line Current Differential Trip Logic • • •											•	•
								•				
				•	•	•	•		•		•	•

PROTECTION	
100% STATOR GROU Operating quantity:	V neutral 3rd/(V neutral 3rd +
operating quantity.	V_neutral_3rd/(V_neutral_3rd + V_zero_3rd)
Pickup level:	0.000 to 0.250 pu in steps of 0.001
Dropout level:	97 to 98% of pickup
Level accuracy:	±2% of reading from 1 to 120 V
Pickup delay:	0 to 600.00 s in steps of 0.01 0.0010 to 0.1000 pu in steps of 0.0001
3rd harmonic supervision level:	0.0010 to 0.1000 pu in steps of 0.0001
Time accuracy:	±3% or ±20 ms, whichever is greater
Operate time: ACCELERATION TIME	< 30 ms at 1.10 × Pickup at 60 Hz
Acceleration	1.00 to 10.00 × FLA in steps of 0.01
current:	0.00 to 180.00 c in stone of 0.01
Acceleration time: Operating mode:	0.00 to 180.00 s in steps of 0.01 Definite Time, Adaptive
ACCIDENTAL ENERGI	ZATION
Operating condition:	
Arming condition:	Undervoltage and/or Machine Offline
Overcurrent:	0.001 7.000 1 1 60.001
Pickup level:	0.02 to 3.000 pu in steps of 0.001
Dropout level: Level accuracy:	97 to 98% of pickup ±0.5% of reading from 0.1 to 2.0 ×
Ecver accuracy.	CT rating
Undervoltage:	
Pickup level:	0.004 to 3.000 pu in steps of 0.001
Dropout level:	102 to 103% of pickup
Level accuracy: Operate Time:	±0.5% of reading 10 to 208 V
AUTORECLOSURE C6	< 30 ms at 1.10 × Pickup at 60 Hz
Two breakers applicat	
Single- and three-pole	e tripping schemes
Up to 4 reclose attem	pts before lockout
Selectable reclosing m	node and breaker sequence
AUTORECLOSURE F60	0/55/050
Single breaker applica	ations, 3-pole tripping schemes
Single breaker applice Up to 4 reclose attem	ations, 3-pole tripping schemes pts before lockout
Single breaker applice Up to 4 reclose attem Independent dead tim	ations, 3-pole tripping schemes pts before lockout ne setting before each shot
Single breaker applice Up to 4 reclose attem Independent dead tim Possibility of changing	ations, 3-pole tripping schemes pts before lockout
Single breaker applico Up to 4 reclose atterm Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE	ttions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot witl
Single breaker applico Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load	ations, 3-pole tripping schemes pts before lockout ne setting before each shot
Single breaker applico Up to 4 reclose attern Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: I_1 and 1_2 amps:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: I_1 and 1_2 amps: Pickup level:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: I_1 and 1_2 amps:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changinc FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: I_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: 1_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time:	tions, 3-pole tripping schemes pts before lockout le setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 < 20 m s at 1.10 x pickup at 60 Hz
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: 1_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time:	tions, 3-pole tripping schemes pts before lockout le setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 < 20 m s at 1.10 x pickup at 60 Hz
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: I_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILIARY VERVOLT	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 <20 ms at 1.10 × pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: I_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILARY OVERVOLT Pickup level:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 <20 ms at 1.10 × pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: _1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILIARY VERVOLT Pickup level: Dropout level: Dropout level: Level accuracy:	tions, 3-pole tripping schemes pts before lockout le setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 < 20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Prickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILIARY OVERVOLT Pickup level: Dropout level: Dropout level: Dropout level: Level accuracy: Pickup delay:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2 com sat 1.10 × pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILIARY OVERVOLT Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phosor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 < 20 ms at 1.10 × pickup at 60 Hz ±3% or ±20 ms, whichever is greater IAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Prickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILIARY OVERVOLT Pickup level: Dropout level: Dropout level: Dropout level: Level accuracy: Pickup delay:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 ±3% of oprate time or ±4 ms
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: AUXILIARY OVERVOLT Pickup level: Level accuracy: Pickup delay: Reset delay: Reset delay: Reset delay: Reset delay: Reset delay: Reset delay: Reset delay:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 ±3% of oprate time or ±4 ms
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: 1_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup level: Dropout level: Level accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Reset delay: Timing accuracy: Operate time:	tions, 3-pole tripping schemes pts before lockout is setting before each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater 4.05% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) <30 ms at 1.10 x pickup at 60 Hz
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup delay: Level accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO	tions, 3-pole tripping schemes pts before lockout le setting before each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2 ±3% or ±20 ms, whichever is greater AGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) <30 ms at 1.10 × pickup at 60 Hz LTAGE 0.004 to 3.000 pu in steps of 0.01
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup delay: Reset delay: Dropout level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Dropout level: Dropout level: Dropout level:	tions, 3-pole tripping schemes pts before lockout is setting before each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater IAGE 0.004 to 3.000 pu in steps of 0.01 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) <30 ms at 1.10 x pickup at 60 Hz LTAGE 0.004 to 3.000 pu in steps of 0.001 102 to 103% of pickup
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Prickup level: Dropout level: Level accuracy: Pickup level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Celay: Reset delay: Reset delay: Reset delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level:	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 < 20 ms at 1.10 × pickup at 60 Hz ±3% or 120 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.01 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) < 30 ms at 1.10 × pickup at 60 Hz ETAGE 0.004 to 3.000 pu in steps of 0.001 102 to 103% of pickup =0.5% of reading from 10 to 208 V
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: 1_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Level accuracy: Curve shapes:	tions, 3-pole tripping schemes pts before lockout le setting before each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 4.20 ms at 1.10 × pickup at 60 Hz ±3% or ±20 ms, whichever is greater 4.3% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) 4.3% of pickup ±0.5% of reading from 10 to 208 V 0.004 to 3.000 pu in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) 4.30 ms at 1.10 × pickup at 60 Hz LTAGE 0.004 to 3.000 pu in steps of 0.001 102 to 103% of pickup ±0.5% of reading from 10 to 208 V GE IAV Inverse, Definite Time
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup vEVENULT Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve shapes: Curve multiplier:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 23% of operate time or ±4 ms (whichever is greater) <30 ms at 1.10 x pickup at 60 Hz LTAGE 0.004 to 3.000 pu in steps of 0.001 102 to 103% of pickup ±0.5% of reading from 10 to 208 V GE IAV Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup vEVENULT Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve shapes: Curve multiplier:	tions, 3-pole tripping schemes pts before lockout le setting before each shot g protection settings ofter each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2 to 3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) <1.000 to 3.000 pu in steps of 0.001 102 to 103% of pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.001 ±3% of operate time or ±000 to 208 V 6E IAV Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 ±3% of operate time or ±4 ms
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup delay: Reset delay: Dropout level: Dropout level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY OVERVOLT Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve shapes: Curve multiplier: Timing accuracy:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 c.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 21 steps of 0.01 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±0.5% of reading from 10 to 208 V GE IAVI Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater)
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Dropout level: Level accuracy: Pickup level: Dropout level: Level accuracy: Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve shapes: Curve multiplier: Timing accuracy: BREAKER ARCING CU	tions, 3-pole tripping schemes pts before lockout e setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 × pickup at 60 Hz ±3% of ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.01 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 2.5% of reading from 10 to 208 V 2.5% of reading from 10 to 208 V GE IAV Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) #3% of operate time or ±4 ms (whichever is greater) #3% of operate time or ±4 ms (whichever is greater) #3% of operate time or ±4 ms
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Level accuracy: Curve shapes: Curve multiplier: Timing accuracy: BREAKER ARCING CU Principle:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 1 to 600.00 s in steps of 0.01 1 to 3000 pu in steps of 0.01 1 to 3000 pu in steps of 0.01 1 to 300 s of pickup ±0.5% of reading from 10 to 208 V GE IAV Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 1 to 3% of operate time or ±4 ms (whichever is greater) REENT Accumulates breaker duty (121 and meosures foult duration
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Dropout level: Level accuracy: Pickup level: Dropout level: Level accuracy: Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve shapes: Curve multiplier: Timing accuracy: BREAKER ARCING CU	ttions, 3-pole tripping schemes pts before lockout le setting before each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 p uin steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) <cage 1.0004 to 3.000 p uin steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±3% of operate time or ±4 ms (whichever is greater) RENT RENT</cage
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: 1_1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup delay: Reset delay: Timing accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY OVERVOLT Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve shapes: Curve multiplier: Timing accuracy: BREAKER ARCING CU Principle: Initiation:	ttions, 3-pole tripping schemes pts before lockout le setting before each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 p uin steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) <cage 1.0004 to 3.000 p uin steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±3% of operate time or ±4 ms (whichever is greater) RENT RENT</cage
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L 1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: Timing accuracy: Operate time: Dropout level: Level accuracy: Operate time: Timing accuracy: Dropout level: Level accuracy: Dropout level: Level accuracy: Dropout level: Level accuracy: Curve shapes: Curve multiplier: Timing accuracy: BREAKER ARCING CU Principle: Initiation: Compensation for	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 1 to 600.00 s in steps of 0.01 1 to 3000 pu in steps of 0.01 1 to 3000 pu in steps of 0.01 1 to 300 s of pickup ±0.5% of reading from 10 to 208 V GE IAV Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 1 to 3% of operate time or ±4 ms (whichever is greater) REENT Accumulates breaker duty (121 and meosures foult duration
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: _l and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Dickup level: Dropout level: Level accuracy: BICKUP level: Curve shapes: Curve multiplier: Timing accuracy: BREAKER ARCING CU Principle: Initiation: Compensation for auxiliary relays:	tions, 3-pole tripping schemes pts before lockout protection settings after each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 97 to 98% of Pickup at 60 Hz ±3% or ±20 ms, whichever is greater AGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±3% of operate time or ±4 ms (whichever is greater) ±0.5% of reading from 10 to 208 V EI IAU Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) REENT Accumulates breaker duty (I2t) and measures fault duration Programmable per phase from any FlexLogic operand 0 to 65.535 s in steps of 0.001
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: L1 and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Dropout level: Level accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY OVERVOLT Pickup level: Dropout level: Level accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Curve multiplier: Timing accuracy: BREAKER ARCING CU Principle: Initiation: Compensation for auxiliary relays:	tions, 3-pole tripping schemes pts before lockout is setting before each shot g protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 2.20 ms at 1.10 x pickup at 60 Hz ±3% or ±20 ms, whichever is greater FAGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 2.3% of operate time or ±4 ms (whichever is greater) 4.3% of operate time or ±4 ms (whichever is greater) 4.3% of operate time or ±4 ms (whichever is greater) 8.2% of operate time or ±4 ms (whichever is greater) RENT Accumulates breaker duty (I2t) and measures fault duration Programmable per phase from any FlexLogic operand 0 to 65:535 s in steps of 0.001 0 to 50000 kA2-cycle in steps of 1
Single breaker applicc Up to 4 reclose attem Independent dead tim Possibility of changing FlexLogic. AMP UNBALANCE Avg and Full Load amps: _l and 1_2 amps: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Operate time: Timing accuracy: Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time: AUXILIARY UNDERVO Pickup level: Dropout level: Level accuracy: Dickup level: Dropout level: Level accuracy: BICKUP level: Curve shapes: Curve multiplier: Timing accuracy: BREAKER ARCING CU Principle: Initiation: Compensation for auxiliary relays:	tions, 3-pole tripping schemes pts before lockout protection settings after each shot protection settings after each shot with RMS Phasor 0.0 to 100.0% in steps of 0.1 97 to 98% of pickup ±0.1 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 97 to 98% of Pickup at 60 Hz ±3% or ±20 ms, whichever is greater AGE 0.004 to 3.000 pu in steps of 0.001 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) ±3% of operate time or ±4 ms (whichever is greater) ±0.5% of reading from 10 to 208 V EI IAU Inverse, Definite Time Time Dial = 0 to 600.00 in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) REENT Accumulates breaker duty (I2t) and measures fault duration Programmable per phase from any FlexLogic operand 0 to 65.535 s in steps of 0.001

PROTECTION	
PROTECTION BREAKER FAILURE	1 colo 7 colo
Mode: Current supervision: Current supv. pickup:	1-pole, 3-pole phase, neutral current 0.02 to 30.000 pu in steps of 0.001
Current supv. dropout:	97 to 98% of pickup
Current supv. accura 0.1 to 2.0 × CT	cy: ±0.75% of reading or ±2% of rated
rating:	(whichever is greater)
above 2 × CT rating: BREAKER FLASHOVER	
Operating quantity:	Phase current, voltage and voltage difference
Pickup level voltage: Dropout level voltage:	0.02 to 1.500 pu in steps of 0.001 97 to 98% of pickup
Pickup level current: Dropout level	0.004 to 1.500 pu in steps of 0.001 97 to 98% of pickup
current: Level accuracy:	±0.5% or ±0.1% of rated, whichever
Pickup delay:	is greater 0 to 65.535 s in steps of 0.001
Time accuracy: Operate time:	±3% or ±42 ms, whichever is greater <42 ms at 1.10 × pickup at 60 Hz
BUS DIFFERENTIAL (8 Pickup level:	
Low slope:	15 to 100% in steps of 1
High slope: Low breakpoint:	50 to 100% in steps of 1 1.00 to 30.00 pu in steps of 0.01
High breakpoint: High set level:	1.00 to 30.00 pu in steps of 0.01 1.00 to 30.00 pu in steps of 0.01 0.10 to 99.99 pu in steps of 0.01
Dropout level: Level accuracy:	97 to 98% of Pickup
0.1 to 2.0 × CT rating:	±0.5% of reading or ±1% of rated (whichever is greater)
>2.0 × CT rating	±1.5% of reading
Operating time: CT TROUBLE	one power system cycle (typical)
Responding to: Pickup level:	Differential current 0.020 to 2.000 pu in steps of 0.001
Pickup delay: Time Accuracy:	1.0 to 60.0 sec. in steps of 0.1 ±3% or ±40ms, whichever is greater
Availability: GENERATOR UNBALA	1 per zone of protection (B90)
Gen. nominal	0.000 to 1.250 pu in steps of 0.001
current: Stages:	2 (I2t with linear reset and definite time)
Pickup level: Dropout level:	0.00 to 100.00% in steps of 0.01 97 to 98% of pickup
Level accuracy: 0.1 to 2 x CT rating:	±0.5% of reading or 1% of rated
> 2.0 x CT rating:	(whichever is greater) ±1.5% of reading
Time dial (K-value): Pickup delay:	0.00 to 100.00 in steps of 0.01 0.0 to 1000.0 s in steps of 0.1
Reset delay:	0.0 to 1000.0 s in steps of 0.1
Time accuracy: Operate time:	±3% or ±20 ms, whichever is greater < 50 ms at 60 Hz
GROUND DISTANCE Characteristic:	Mho (memory polarized or offset)
	or Quad (memory polarized or non- directional), selectable individually per zone
Reactance polarization:	negative-sequence or zero-sequence current
Non-homogeneity angle:	-40 to 40° in steps of 1
Number of zones: Directionality:	5 Forward, Reverse, or Non-Directional
· ·	per zone
Reach (secondary W):	0.02 to 250.00 in steps of 0.01
Reach accuracy:	±5% including the effect of CVT transients up to an SIR of 30
Distance characteristic angle:	30 to 90° in steps of 1
Distance comparator limit	30 to 90° in steps of 1
angle: Directional supervisio	n
Characteristic angle:	30 to 90° in steps of 1
Limit angle: Zero-sequence comp	
Z0/Z1 magnitude: Z0/Z1 angle:	0.00 to 10.00 in steps of 0.01 -90 to 90° in steps of 1
Zero-sequence mutu ZOM/Z1 magnitude:	
ZOM/Z1 angle: Right blinder (Quad o	-90 to 90° in steps of 1
Reach:	0.02 to 500 in steps of 0.01
Characteristic angle: Left blinder (Quad on	
	0.02 to 500 in steps of 0.01 60 to 90° in steps of 1
Time delay:	0.000 to 65.535 s in steps of 0.001

PROTECTION Timing accuracy:	±3% or 4 ms, whichever is greater
Current supervision:	poutral current (71-0)
Level: Bickup:	neutral current (31_0)
Pickup: Dropout:	0.050 to 30.000 pu in steps of 0.001 97 to 98%
Memory duration:	5 to 25 cycles in steps of 1
Voltage supervision	0 to 5.000 pu in steps of 0.001
pickup (series	
compensation	
applications): Operation time:	1 to 1.5 cycles (typical)
Reset time:	1 power cycle (typical)
GROUND DISTANCE OP	ERATING TIME CURVES
The operating times are	response times of a microprocessor
estimation of the total re application. The operation	tput contacts specifications for esponse time for a particular ng times are average times including nception angle or type of a voltage nd CVTs).
30 29 28	
27	
26	
24	
222	
E 20	
17 16	
15	
13	
12	
10 20 40 60	70 80
Fault Location (%)	
LINE CURRENT DIFFERE	
Application:	2 or 3 terminal line, series
	compensated line, tapped line, with
Pickup current level:	charging current compensation 0.20 to 4.00 pu in steps of 0.01
CT Tap (CT mismatch	0.20 to 5.00 in steps of 0.01
factor):	
Slope # 1:	1 to 50%
Slope # 2:	1 to 70%
Breakpoint between	0.0 to 20.0 pu in steps of 0.1
slopes: DTT:	Direct Transfer Trip (1 and 3 pole)
	remote L90
Operating Time:	1.0 to 1.5 power cycles duration
Asymmetrical channel	asymmetry up to 10ms
delay compensation	
using GPS: LINE CURRENT DIFFERE	
87L trip:	Adds security for trip decision;
	creates 1 and 3 pole trip logic
DTT:	Engaged Direct Transfer Trip (1 and
	pole) from remote L90
DD:	Sensitive Disturbance Detector to
Stub bus protection:	detect fault occurrence Security for ring bus and 116 break
Stub bus protection:	Security for ring bus and 1½ break configurations
Open pole detector:	Security for sequential and evolving
	faults
LINE PICKUP	0.001. 70.000
Phase IOC:	0.02 to 30.000 pu
Undervoltage pickup: Overvoltage delay:	0.004 to 3.000 pu 0.000 to 65.535 s
LOAD ENCROACHMENT	
Responds to:	Positive-sequence quantities
Minimum voltage:	0.004 to 3.000 pu in steps of 0.001
Reach (sec. W):	0.02 to 250.00 in steps of 0.01
Impedance accuracy:	±5%
Angle:	5 to 50° in steps of 1
Angle accuracy: Pickup delay:	±2° 0 to 65.535 s in steps of 0.001
Reset delay:	0 to 65.535 s in steps of 0.001
Time accuracy:	±3% or ±4 ms, whichever is greater
Operate time:	< 30 ms at 60 Hz
LOSS OF EXCITATION	Desitive energy in the
Operating condition:	Positive-sequence impedance
Characteristic: Center:	2 independent offset mho circles
	0.10 to 300.0 (sec.) in steps of 0.01 0.10 to 300.0. (sec.) in steps of 0.01
Radius	±3%
Reach accuracy:	
	0.000 to 1.250 pu in steps of 0.001
Reach accuracy: Undervoltage supervisi Level: Accuracy:	± 0.5% of reading from 10 to 208V
Undervoltage supervisi Level: Accuracy: Pickup delay:	± 0.5% of reading from 10 to 208V 0 to 65.535 s in steps of 0.001
Reach accuracy: Undervoltage supervisi Level: Accuracy: Pickup delay: Timing accuracy:	± 0.5% of reading from 10 to 208V 0 to 65.535 s in steps of 0.001 ±3% or ±20 ms, whichever is greate
Reach accuracy: Undervoltage supervisi Level: Accuracy: Pickup delay:	± 0.5% of reading from 10 to 208V 0 to 65.535 s in steps of 0.001
Reach accuracy: Undervoltage supervisi Level: Accuracy: Pickup delay: Timing accuracy:	± 0.5% of reading from 10 to 208V 0 to 65.535 s in steps of 0.001 ±3% or ±20 ms, whichever is greate

UR Technical Specifications

PROTECTION	
MECHANICAL JAM	
Operating condition: Arming condition:	Phase overcurrent Motor not starting
Pickup level:	1.00 to 10.00 × FLA in steps of 0.01
Dropout level:	97 to 98% of pickup
Level accuracy: at > 2.0 × CT rating:	at 0.1 to 2.0 × CT: ±0.5% of reading ±1.5% of reading
Pickup delay:	0.10 to 600.00 s in steps of 0.01
Reset delay:	0.00 to 600.00 s in steps of 0.01
Time accuracy: MOTOR START SUPER	±3% or ±20 ms, whichever is greater
Maximum no. of	1 to 16 in steps of 1
starts: Monitored time	1 to 300 minutes in steps of 1
interval:	
	0 to 300 minutes in steps of 1
Restart delay: NEGATIVE SEQUENCE	0 to 50000seconds in steps of 1 DIRECTIONAL OC
Directionality:	Co-existing forward and reverse
Polarizing: Polarizing voltage:	Voltage
Operating current:	V_2 I_2 or I_0
Level sensing:	
Zero-sequence: Negative-sequence:	_0 - K × _1 _2 - K × _1
Restraint, K:	0.000 to 0.500 in steps of 0.001
Characteristic angle:	0 to 90° in steps of 1 40 to 90° in steps of 1, independent for
Limit angle:	forward and reverse
Angle accuracy:	±2°
Offset impedance: Pickup level:	0.00 to 250.00W in steps of 0.01 0.05 to 30.00 pu in steps of 0.01
Dropout level:	97 to 98%
Operation time: NEGATIVE SEQUENCE	< 16 ms at 3 × Pickup at 60 Hz
Current:	Phasor
Pickup level:	0.02 to 30.000 pu in steps of 0.001
Dropout level: Level accuracy:	97 to 98% of Pickup
0.1 to 2.0 × CT	$\pm 0.5\%$ of reading or $\pm 1\%$ of rated
rating:	(whichever is greater)> 2.0 × CT rating: ±1.5% of reading
Overreach:	< 2%
Pickup delay:	0.00 to 600.00 s in steps of 0.01
Reset delay: Operate time:	0.00 to 600.00 s in steps of 0.01 < 20 ms at 3 × Pickup at 60 Hz Operate at 1.5 × Pickup ±3% or ± 4 ms (whichever is greater)
Timing accuracy:	Operate at $1.5 \times \text{Pickup} \pm 3\% \text{ or} \pm 4 \text{ ms}$
NEGATIVE SEQUENCE	
Pickup level:	0.004 to 1.250 pu in steps of 0.001 97 to 98% of Pickup
Dropout level:	97 to 98% of Pickup
Level accuracy: Pickup delay:	±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01
Reset delay:	0 to 600.00 s in steps of 0.01
Time accuracy: Operate time:	±3% or ±20 ms, whichever is greater < 30 ms at 1.10 × Pickup at 60 Hz
NEGATIVE SEQUENCE	TOC
Current: Pickup level:	Phasor 0.02 to 30.000 pu in steps of 0.001
Dropout level:	97% to 98% of Pickup
Level accuracy:	0 EV of roading or 110/ of rated
	(which ever is greater from 0.1 to 2.0 \times CT rating ±1.5% of reading > 2.0 \times CT rating
	CT rating
Curve shapes:	IEEE Moderately/Very/Extremely Inverse: IEC (and BS) A/B/C and Short
	Inverse; IEC (and BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/ Extremely Inverse; 12t; FlexCurves.
	(programmable); Definite Time (0.01 s
	base curve)
Curve multiplier (Time dial):	0.00 to 600.00 in steps of 0.01
Reset type:	Instantaneous/Timed (per IEEE) and
Timing accuracy	Lear
Timing accuracy:	Operate at > 1.03 × Actual Pickup ±3.5% of operate time or ±½ cycle
	(whichever is greater)
NEUTRAL DIRECTIONA Directionality:	Co-existing forward and reverse
Polarizing:	Voltage, Current, Dual, Dual-I, Dual-V
Polarizing voltage: Polarizing current:	V_0 or VX IG
Operating current:	I_0
Level sensing:	3 × (I_0 - K × I_1), IG
Restraint, K: Characteristic angle:	0.000 to 0.500 in steps of 0.001 -90 to 90° in steps of 1
Limit angle:	40 to 90° in steps of 1, independent for
Angle accuracy:	forward and reverse ±2°
Offset impedance:	0.00 to 250.00W in steps of 0.01
Pickup level:	0.05 to 30.00 pu in steps of 0.01
Dropout level: Operation time:	97 to 98% < 16 ms at 3 × Pickup at 60 Hz
NEUTRAL OVERVOLTA	GE
Pickup level: Polarizing:	0.004 to 3.000 pu in steps of 0.001 Voltage, Current, Dual, Dual-I, Dual-V
Level accuracy:	±0.5% of reading from 10 to 208 V
Pickup delay: Reset delay:	0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01
Reset delay: Timing accuracy:	$\pm 3\%$ or ± 20 ms (whichever is greater)
Operate time:	< 30 ms at 1.10 × Pickup at 60 Hz

PROTECTION OPEN POLE DETECTOR	B
Detects an open pole of	condition, monitoring breaker auxiliary
contacts, the current in the line	n each phase and optional voltages on
Current pickup level:	0.02 to 30.000 pu in steps of 0.001
Line capacitive reactances (XC1,	300.0 to 9999.9 sec. W in steps of 0.1
XC0):	
Remote current pickup level:	0.02 to 30.000 pu in steps of 0.001
Current dropout	Pickup + 3%, not less than 0.05 pu
level: OVERFREQUENCY	
Pickup level:	20.00 to 65.00 Hz in steps of 0.01
Dropout level: Level accuracy:	Pickup - 0.03 Hz ±0.01 Hz
Time delay:	0 to 65.535 s in steps of 0.001
Timer accuracy: PHASE COMPARISON	±3% or 4 ms, whichever is greater
Signal Selection:	Mixed I_2 - K x I_1 (K=0.00 to 0.25 in steps of 0.01, or3I_0)
Angle Reference:	steps of 0.01, or31_0)
Fault detector low:	0 to 360° leading in steps of 1
Instantaneous	0.02 to 15.00 pu in steps of 0.01
Overcurrent: I ₂ x Z - V ₂ :	0.005 to 15.00 pu in steps of 0.01
dI_2 / d_t :	0.01 to 5.00 pu in steps of 0.01
dI ₁ / dt: Fault detector High:	0.01 to 5.00 pu in steps of 0.01
Instantaneous Overcurrent:	0.10 to 15.00 pu in steps of 0.01
12 x Z - V2:	0.005 to 15.00 pu in steps of 0.01
dI_2 / d_t :	0.01 to 5.00 pu in steps of 0.01
dl ₁ / dt: Signal Symmetry	0.01 to 5.00 pu in steps of 0.01
Adjustment:	-0.5 to 5.0 ms in steps of 0.1
Channel Delay Adjustment:	0.000 to 30.00 ms in steps of 0.001
Channel	channel delay and signal symmetry compensation
Adjustments: Operate Time	3/4 cycle for single phase comparison
(Typical):	First coincidence or enhanced
Trip Security: Second Coincidence	10 to 200 ms in steps of 1
Timer: Enhanced Stability	40 to 180° in steps of 1
Angle:	40 to 100 in steps of 1
PHASE DIRECTIONAL	OVERCURRENT
Relay connection	
Relay connection: Quadrature voltage:	90° (quadrature)
	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}),
Quadrature voltage:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase C (V _{AB}) phase A (V _{CD}), phase B (V _{AC}).
Quadrature voltage: ABC phase seq.: ACB phase seq.:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA})
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase C (V _{AB}) phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA})
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2°
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: [FlexI Tripping (reverse	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2°
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: [Flext Tripping (reverse load, forward fault):	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{\circ}$ ogic elements): < 12 ms, typically
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Characteristic angle: Angle accuracy: Operation time: [Flext Tripping (reverse load, forward fault): Blocking (forward load, reverse fault):	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{\circ}$ ogic elements):
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: [Flext] Tripping (reverse load, forward foult): Blocking (forward	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{\circ}$ ogic elements): < 12 ms, typically
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase C (V _{AB}) phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° ogic elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or non-
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}) on the set of 0.001 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{\circ}$
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flexi Operation time: (Flexi Blocking (forward load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{20}$
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flexi Voperation time: (Flexi Bolacking (forward load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{20}$ ogic elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (FlexI Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W):	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{\circ}$
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward foult): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach (secondary W):	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° ogic elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or onn- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (FlexI Tripping (reverse load, forward fault): Blocking (forward Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach (secondary W): Reach accuracy: Distance:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{\circ}$ ogic elements): < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or offset) set (memory polarized or offset) set (memory polarized or offset) or Quad (memory polarized or offset) set (memory pol
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: [Flext] Tripping (reverse load, forward foult): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Comparator limit	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° ogic elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or onn- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (FlexI Tripping (reverse load, forward fault): Blocking (forward Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Comparator limit angle:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° oigc elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward blocking (forward blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Comparator limit angle: Directional supervisio Characteristic angle:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), olive A (V _{BC}), phase B (V _{AC}), 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 42° • 30 to 90° in steps of 1 30 to 90° in steps of 1 50 to 90° in steps of 1 50 to 90° in steps of 1
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Fleat) Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Directionality: Reach (secondary W): Reach (secondary W): Reach (secondary W): Reach (secondary W): Characteristic angle: Distance: Characteristic angle: Directional supervisio Characteristic angle:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° orgic elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward blocking (forward blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Comparator limit angle: Directional supervisio Characteristic angle:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° orgic elements : < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Comparator limit angle: Directional supervisio Characteristic angle: Limit angle: Right blinder (Quad on Reach: Characteristic angle:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase C (V _{BC}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° ogic elements): < 12 ms, typically × 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1 in: 30 to 90° in steps of 1 int to 90° in steps of 1 int to 90° in steps of 1 int to 500 in steps of 1
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Fleat) Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Directionality: Reach (secondary W): Reach (secondary W): Reach (secondary W): Reach (secondary W): Reach (secondary W): Characteristic angle: Characteristic angle: Limit angle: Right blinder (Quad on Reach: Characteristic angle: Left Blinder (Quad on Reach:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), onumber 2 (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° or Quad (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1 100° in steps of 1 101° in steps of 1 102° to 500 in steps of 1 102° in steps of 1 103° in ste
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward foult): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Characteristic angle: Characteristic angle: Limit angle: Lim	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase C (V _{AB}) phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° < 12 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1 100 to 90° in steps of 1 100 to 90° in steps of 1 101 to 500 in steps of 1 101 to 500 in steps of 0.01 60 to 90° in steps of 0.01 50 to 90° in steps of 0.0
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Comparator limit angle: Directional supervisio Characteristic angle: Limit angle: Right blinder (Quad on Reach: Characteristic angle: Left Blinder (Quad on Reach: Characteristic angle: Limit angle: Characteristic	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), onumber 2 (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° or Quad (memory polarized or offset) or Quad (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1 100° in steps of 1 101° in steps of 1 102° to 500 in steps of 1 102° in steps of 1 103° in ste
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Characteristic angle: Characteristic angle: Characteristic angle: Characteristic angle: Limit angle: Directional supervisio: Characteristic angle: Limit angle: Limit angle: Characteristic angle: Limit angle: Characteristic angle: Characteristic angle: Characteristic angle: Characteristic angle: Characteristic angle: Characteristic angle: Timing accuracy: Current supervision:	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), 0.004 to 3.000 pu in steps of 0.001 4.2°
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Flext Tripping (reverse load, forward foult): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Number of zones: Directionality: Reach (secondary W): Reach accuracy: Distance: Characteristic angle: Characteristic angle: Characteristic angle: Limit angle: Limit angle: Limit angle: Limit angle: Limit angle: Characteristic angle: Limit angle: Characteristic angle: Characteristic angle: Characteristic angle: Limit angle: Characteristic angle: Characteristic angle: Limit angle: Timing accuracy: Current supervision: Level: Pickup:	90° (quadrature) phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 $\pm 2^{20}$ ogic elements): < 12 ms, typically < 8 ms, typically < 8 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 $\pm 5\%$ including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1 in: 0.02 to 500 in steps of 1. (V_{2}) 0.02 to 500 in steps of 0.01 $\pm 3\%$ or 4 ms, whichever is greater line-to-line current 0.050 to 30.000 pu in steps of 0.001
Quadrature voltage: ABC phase seq.: ACB phase seq.: Polarizing voltage threshold: Current sensitivity threshold: Characteristic angle: Angle accuracy: Operation time: (Fleat) Ioad, forward fault): Blocking (forward load, reverse fault): PHASE DISTANCE Characteristic: Directionality: Reach (secondary W): Reach (secondary W)	90° (quadrature) phase A (V _{BC}), phase B (V _{CA}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase A (V _{CB}), phase B (V _{AC}), phase C (V _{BA}) 0.004 to 3.000 pu in steps of 0.001 0.05 pu 0 to 359° in steps of 1 ±2° orgic elements : < 12 ms, typically Mho (memory polarized or offset) or Quad (memory polarized or non- directional), selectable individually per zone Up to 5 Forward, Reverse, or Non-Directional per zone 0.02 to 250.00 in steps of 0.01 ±5% including the effect of CVT transients up to an SIR of 30 30 to 90° in steps of 1 30 to 90° in steps of 1 30 to 90° in steps of 1 10): 0.02 to 500 in steps of 1 0.02 to 4 ms, whichever is greater line-to-line current

DEGTECTION	
PROTECTION Memory duration:	5 to 25 cycles in steps of 1
VT location:	all delta-wye and wye-delta
CT location:	transformers all delta-wye and wye-delta
	transformérs
Voltage supervision pickup (series	0 to 5.000 pu in steps of 0.001
compensation	
applications):	ERATING TIME CURVES
The operating times a	re response times of a microprocessor
part of the relay. See of the total	output contacts specifications for I response time for a particular
application. The operc	iting times are average times including
variables such as faul	t inception angle or type of a voltage and CVTs).
source (magnetic VIs	ana CVIS).
30 29	
28 27	
26	
24	
t 19	
17	
16	
14	
12	
10 0 20 40 Foult Loco	60 70 80
PHASE/NEUTRAL/GRO Pickup level:	0.02 to 30.000 pu in steps of 0.001
Dropout level:	97 to 98% of pickup
Level accuracy: 0.1 to 2.0 × CT	±0.5% of reading or ±1% of rated
rating:	(whichever is greater)
> 2.0 × CT rating: Overreach:	±1.5% of reading <2%
Pickup delay:	0.00 to 600.00 s in steps of 0.01
Reset delay: Operate time:	0.00 to 600.00 s in steps of 0.01 <16ms at 3 × pickup at 60Hz (Phase/
operate time.	Ground IOC) <20ms at 3 × pickup at
Timing accuracy:	60Hz (Neutral IOC) Operate at 1.5 × Pickup ±3% or ±4 ms
	(whichever is greater)
PHASE/NEUTRAL/GRO Current:	
Pickup level:	Phasor or RMS 0.02 to 30.000 pu in steps of 0.001
Dropout level:	97% to 98% of Pickup for 0.1 to 2.0 × CT: ±0.5% of reading
Level accuracy:	or $\pm 1\%$ of rated (whichever is greater)
	for > 2.0 × CT: ±1.5% of reading > 2.0 × CT rating
Curve shapes:	IEEE Moderately/Very/Extremely
	Inverse; IEC (and BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/
	Extremely Inverse; I2t; FlexCurves.
	(programmable); Definite Time (0.01 s base curve)
Curve multiplier:	Time Dial = 0.00 to 600.00 in steps
	of 0.01
Reset type: Timing accuracy:	Instantaneous/Timed (per IEEE) Operate at > 1.03 × actual Pickup
- *	±3.5% of operate time or ±½ cycle
PHASE OVERVOLTAGE	
Voltage: Rickup level:	Phasor only 0.004 to 3.000 pu in steps of 0.001
Pickup level: Dropout level:	97 to 98% of Pickup
Level accuracy:	±0.5% of reading from 10 to 208V
Pickup delay: Operate time:	0.00 to 600.00 in steps of 0.01 s < 30 ms at 1.10 × Pickup at 60 Hz
Timing accuracy:	±3% or ±4 ms (whichever is greater)
PHASE UNDERVOLTA Voltage:	GE Phasor only
Pickup level:	0.004 to 3.000 pu in steps of 0.001
Dropout level: Level accuracy:	102 to 103% of Pickup ±0.5% of reading from 10 to 208V
Curve shapes:	GE IAV Inverse; Definite Time (0.1s
Curve multiplier:	base curve) Time Dial = 0.00 to 600.00 in steps
	of 0.01
Timing accuracy:	Operate at $< 0.90 \times \text{Pickup } \pm 3.5\%$ of
	operate time or ±4 ms (whichever is greater)
PILOT-AIDED SCHEME	S
Permissive Underrea) Transfer Trip (DUTT) ching Transfer Trip (PUTT)
Permissive Overreacl Hybrid POTT Scheme	ning Transfer Trip (POTT)
Directional Comparis	
Customizable versior and DCB1)	of the POTT and DCB schemes (POTT1

PROTECTION POWER SWING DETECT	-
Functions:	Power swing block, Out-of-step trip
Characteristic:	Mho or Quad
Measured impedance:	Positive-sequence
Blocking / tripping mozes:	2-step or 3-step
Tripping mode:	Early or Delayed
Current supervision:	
Pickup level:	0.050 to 30.000 pu in steps of 0.001
Dropout level:	97 to 98% of Pickup
Fwd / reverse reach	0.10 to 500.00W in steps of 0.01
(sec. W): Left and right blinders	0.10 to 500.00W in steps of 0.01
(sec. W):	0.10 to 500.00W in steps of 0.01
Impedance accuracy:	±5%
Fwd / reverse angle	40 to 90° in steps of 1
impedances:	. 28
Angle accuracy: Characteristic limit	±2° 40 to 140° in steps of 1
Characteristic limit angles:	40 to 140 III Steps 01 T
Timers:	0.000 to 65.535 s in steps of 0.001
Timing accuracy:	±3% or 4 ms, whichever is greater
RATE OF CHANGE OF FI	REQUENCY
df/dt trend:	increasing, decreasing
df/dt nickup loual:	bi-directional
df/dt pickup level: df/dt dropout level:	0.10 to 15.00 Hz/s in steps of 0.01 96% of pickup
df/dt level accuracy:	80 mHz/s or 3.5%, whichever is greater
Overvoltage supv.:	0.02 to 3.000 pu in steps of 0.001
Overcurrent supv.:	0.000 to 30.000 pu in steps of 0.001
Pickup delay:	0 to 65.535 s in steps of 0.001
Reset delay:	0 to 65.535 s in steps of 0.001
Time accuracy: 95% settling time for	±3% or ±4 ms, whichever is greater < 24 cycles
df/dt:	, .,
Operate time:	
at 2 × pickup:	
at 3 × pickup:	
RESTRICTED GROUND F Pickup:	0.000 to 30.000 pu in steps of 0.001
Dropout:	97 to 98% of Pickup
Slope:	0 to 100% in steps of 1%
Pickup delay:	0 to 600.00 s in steps of 0.01
Dropout delay:	0 to 600.00 s in steps of 0.01
Operate time:	< 1power system cycle
SENSITIVE DIRECTIONA Measured power:	3-phase, true RMS
Number of stages:	2
Characteristic angle:	0 to 359° in steps of 1
Calibration angle:	0.00 to 0.95° in steps of 0.05
Minimum power:	-1.200 to 1.200 pu in steps of 0.001
Pickup level accuracy:	±1% or ±0.001 pu, whichever is greater
Hysteresis: Pickup delay:	2% or 0.001 pu, whichever is greater 0 to 600.00 s in steps of 0.01
Time accuracy:	$\pm 3\%$ or ± 4 ms, whichever is greater
Operate time:	50 ms
SPLIT PHASE PROTECTI	
Operating quantity:	split phast CT current biased by
Pickup level:	generator load current 0.000 to 1.500 pu in steps of 0.001
Dropout level:	20.000 to 1.500 put in steps of 0.001 97 to 98% of pickup ±0.5% of reading or ±1% of rated
Dropout level: Level accuracy: Pickup delay:	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001
Dropout level: Level accuracy: Pickup delay: Time accuracy:	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time:	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL	97 to 98% of pickup $\pm 0.5\%$ of reading or $\pm 1\%$ of rated 0.000 to 65.535 s in steps of 0.001 $\pm 3\%$ of \pm cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup:	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2:	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 × pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2:	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 1.50 to 30.00 pu in steps of 0.01
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Level accuracy:	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Level accuracy: SVNCHROCHECK	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 1.50 to 30.00 pu in steps of 0.01 ±2%
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Level accuracy: SYNCHROCHECK Max voltage	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 1.50 to 30.00 pu in steps of 0.01
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Level accuracy: SYNCHROCHECK Max voltage difference:	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 1.50 to 30.00 pu in steps of 0.01 ±2%
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Level accuracy: SYNCHROCHECK Max voltage difference:	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 × pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 1 0.00 to 2.00 Hz in steps of 0.01
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Level accuracy: SYNCHROCHECK Max voltage difference: Max freq. difference: Max freq. difference: Mystereis for max.	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 × pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 1
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Level accuracy: SVNCHROCHECK Max voltage difference: Max freq. difference: Hysteresis for max. freq. diff.	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 × pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 1.50 to 30.00 pu in steps of 1 0 to 400000 V in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 0.01 0.00 to 2.00 Hz in steps of 0.01 0.00 to 0.10 Hz in steps of 0.01
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Level accuracy: SYNCHROCHECK Max voltage difference: Max freq. difference: Max freq. difference:	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 × pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 1.50 to 30.00 pu in steps of 1 0 to 400000 V in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 0.01 0.00 to 2.00 Hz in steps of 0.01 0.00 to 0.10 Hz in steps of 0.01
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Level accuracy: SVNCHROCHECK Max voltage difference: Max freq. difference: Hysteresis for max. freq. diff.	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz (0.50 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 0.01 0.00 to 0.00 Hz in steps of 0.01 None, LV1 & DV2, DV1 & LV2, DV1 oi DV2, DV1 xor DV2, DV1 & LV2, DV1 oi
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Level accuracy: SVNCHROCHECK Max voltage difference: Max freq. difference: Max freq. difference: Hysteresis for max. freq. diff. Dead source function:	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 × pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1.00 to 1.50 pu in steps of 0.01 1.50 to 30.00 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 1 0.00 to 2.00 Hz in steps of 0.01 0.00 to 2.00 Hz in steps of 0.01 None, LV1 & DV2, DV1 & LV2, DV1 on DV2, DV1 & DV2, DV1 & DV2 (L = Live D = Dead)
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Level accuracy: SVNCHROCHECK Max voltage difference: Max freq. difference: Hysteresis for max. freq. diff.	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz (0.50 to 1.00 pu in steps of 0.01 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 0.01 0.00 to 0.00 Hz in steps of 0.01 None, LV1 & DV2, DV1 & LV2, DV1 oi DV2, DV1 xor DV2, DV1 & LV2, DV1 oi
Dropout level: Level accuracy: Pickup delay: Time accuracy: Operate time: STATOR DIFFERENTIAL Pickup: Slope 1/2: Break 1: Break 2: Level accuracy: SVNCHROCHECK Max voltage difference: Max freq. difference: Max freq. difference: Hysteresis for max. freq. diff. Dead source function: Freq. Slip Maximun dF:	97 to 98% of pickup ±0.5% of reading or ±1% of rated 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz 0.050 to 1.00 pu in steps of 0.01 1.00 to 1.50 pu in steps of 0.01 1.50 to 30.00 pu in steps of 0.01 ±2% 0 to 400000 V in steps of 1 0 to 100° in steps of 1 0 to 100° in steps of 1 0.00 to 2.00 Hz in steps of 0.01 0.00 to 2.00 Hz in steps of 0.01 None, LV1 & DV2, DV1 & LV2, DV1 oi DV2, DV1 xor DV2, DV1 & DV2 (L = Live D = Dead) 0.10 to 2.00 in steps of 0.01 Hz

Thermal overload	
	Standard curve, FlexCurve,
curves:	voltage dependent curve
	0.00 to 600.00 in steps of 0.01
Multiplier: Thermal Overload	pu = overload factor × FLA
Pickup:	pu = overload lactor x i EA
Overload (OF):	1.00 to 1.50 in steps of 0.001
Standard Overload	
Curve:	
trip time =	
TC	0 x 2.2116623
	,2
$0.02530337 \times \left(\frac{I_{moto}}{OF \times F}\right)$	$\frac{\text{Dr}}{\text{FLA}}$ + 0.05054758 × $\frac{\text{Imotor}}{\text{OF x FLA}}$
	1 to 50000 V in steps of 1 Current unbalance, RTDs
Thermal Model Update Rate:	1 power cycle
Stopped/Running	1 to 65000 min. in steps of 1
Time Cool Constants:	
Stopped/Running	Exponential
Time Cool Constants	
Decay: Hot/Cold Safe Stall	0.01 to 1.00 in steps of 0.01
Ratio:	Per phase current inputs
Current Accuracy: Current Source:	True RMS
Timing Accuracy	\pm 100 ms or \pm 2% whichever is greate
Timing Accuracy for	± 100 ms or ± 4%, whichever is great
Voltage Dependent	
Overload: THIRD HARMONIC NEL	JTRAL UNDERVOLTAGE
	3rd harmonic of auxiliary undervoltage
Undervoltage:	
Pickup leveľ:	0.001 to 3.000 pu in steps of 0.001
Dropout level:	102 to 103% of pickup
Accuracy: Power:	±2% of reading from 1 to 120V
Power: Pickup level:	0.000 to 1.200 pu in steps of 0.001
Dropout level:	97 to 98% of pickup
Accuracy:	$\pm 5\%$ or ± 0.01 pu, whichever is greate
Undervoltage Inhibit	
Level:	0.000 to 3.000 pu in steps of 0.001 pu
Accuracy:	±0.5% of reading from 10 to 208V
Pickup delay:	0 to 600.00 s in steps of 0.01
Time accuracy: Operate time:	±3% or ±20 ms, whichever is greater < 30 ms at 1.10 × pickup at 60 Hz
TRANSFORMER AGING	
Operating quantity:	computed aging accelaration fact
Pickup level:	(pu) 1 to 10 pu in steps of 0.1
	1 to 10 pu in steps of 0.1 0 to 30000 min. in steps of 1
TRANSFORMER INSTAN	TANEOUS DIFFERENTIAL
Pickup level:	2.00 to 30.00 pu in steps of 0.01
Dropout level:	97 to 98% of pickup ±0.5% of reading or ±1% of rat
Level accuracy:	$\pm 0.5\%$ of reading or $\pm 1\%$ of rat
	(whichever is greater)
Operate time:	
Operate time:	< 20 ms at 3 × pickup at 60 Hz
TRANSFORMER HOTTE	ST-SPOT TEMPERATURE
TRANSFORMER HOTTE Operating quantity:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 F LIFE
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1)F LIFE computed accumulated transform
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 97 LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 JF LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 VT DIFERENTIAL
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 9F LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 NT DIFFERENTIAL Differential Restraint pre-set
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 P LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 NT DIFERENTIAL Differential Restraint pre-set 2
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones: Minimum pickup:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 9F LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 9T DIFEREMINAL Differential Restraint pre-set 2 0.05 to 1.00 pu in steps of 0.001
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones: Minimum pickup: Slope 1 range:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 SF LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 NT DIFFERENTIAL Differential Restraint pre-set 2 0.05 to 1.00 pu in steps of 0.001 15 to 100% in steps of 1%
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 9F LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 9T DIFEREMINAL Differential Restraint pre-set 2 0.05 to 1.00 pu in steps of 0.001
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones: Minimum pickup: Slope 1 range: Slope 2 range: Kneepoint 1: Kneepoint 2:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 9F LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 9T DIFFERENTIAL Differential Restraint pre-set 2 0.05 to 1.00 pu in steps of 0.001 15 to 100% in steps of 1% 50 to 100% in steps of 1% 50 to 100% in steps of 1% 1.0 to 2.0 pu in steps of 0.001 1.0 to 3.0 pu in steps of 0.001
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones: Minimum pickup: Slope 1 range: Slope 2 range: Kneepoint 1: Kneepoint 2: And harmonic inhibit	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 FLIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 MT DIFFERENTIAL Differential Restraint pre-set 2 0.05 to 1.00 pu in steps of 0.001 15 to 100% in steps of 1% 50 to 100% in steps of 1% 10 to 2.0 pu in steps of 0.0001
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones: Minimum pickup: Slope 1 range: Slope 2 range: Kneepoint 1: Kneepoint 1: Kneepoint 2: 2nd harmonic inhibit level:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 9F LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 NT DIFFERENTIAL Differential Restraint pre-set 2 0.05 to 1.00 pu in steps of 0.001 15 to 100% in steps of 1% 50 to 100% in steps of 1% 50 to 100% in steps of 0.001 2.0 to 3.00 pu in steps of 0.001 1.0 to 4.0.0% in steps of 0.1
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones: Minimum pickup: Slope 1 range: Slope 2 range: Kneepoint 1: Kneepoint 1: Kneepoint 2: 2nd harmonic inhibit level: Znd harmonic inhibit level:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 FLIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 MT DIFFERENTIAL Differential Restraint pre-set 2 0.05 to 1.00 pu in steps of 0.001 15 to 100% in steps of 1% 50 to 100% in steps of 1. 10 to 2.0 pu in steps of 0.0001 1.0 to 40.0% in steps of 0.1 Adaptive, Traditional, Disabled
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones: Minimum pickup: Slope 1 range: Slope 1 range: Slope 2 range: Kneepoint 1: Kneepoint 2: 2nd harmonic inhibit function: 2nd harmonic inhibit	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 9F LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 NT DIFFERENTIAL Differential Restraint pre-set 2 0.05 to 1.00 pu in steps of 0.001 15 to 100% in steps of 1% 50 to 100% in steps of 1% 50 to 100% in steps of 0.001 2.0 to 3.00 pu in steps of 0.001 1.0 to 4.0.0% in steps of 0.1
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones: Minimum pickup: Slope 1 range: Slope 2 range: Kneepoint 1: Kneepoint 1: Kneepoint 2: 2nd harmonic inhibit level: 2nd harmonic inhibit function: 2nd harmonic inhibit mode: Sth harmonic inhibit	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 FLIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 MT DIFFERENTIAL Differential Restraint pre-set 2 0.05 to 1.00 pu in steps of 0.001 15 to 100% in steps of 1% 50 to 100% in steps of 1. 10 to 2.0 pu in steps of 0.0001 1.0 to 40.0% in steps of 0.1 Adaptive, Traditional, Disabled
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Dropout level: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones: Minimum pickup: Slope 1 range: Slope 2 range: Kneepoint 1: Kneepoint 2: 2nd harmonic inhibit function: 2nd harmonic inhibit function: 2nd harmonic inhibit mode: 5th harmonic inhibit range:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 9F LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 9T DIFEREMINIL Differential Restraint pre-set 2 0.05 to 1.00 pu in steps of 0.001 15 to 100% in steps of 1% 50 to 100% in steps of 1% 1.0 to 2.0 pu in steps of 0.001 1.0 to 4.0.0% in steps of 0.001 Adaptive, Traditional, Disabled Per-phase, 2-out-of-3, Average
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones: Minimum pickup: Slope 1 range: Slope 2 range: Kneepoint 1: Kneepoint 1: Kneepoint 1: Kneepoint 1: Znd harmonic inhibit level: 2nd harmonic inhibit level: 2nd harmonic inhibit function: 2nd harmonic inhibit range: 5th harmonic inhibit range: Operate times:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 9F LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 9T DIFEREMINIL Differential Restraint pre-set 2 0.05 to 1.00 pu in steps of 0.001 15 to 100% in steps of 1% 50 to 100% in steps of 1% 1.0 to 2.0 pu in steps of 0.001 1.0 to 4.0.0% in steps of 0.001 Adaptive, Traditional, Disabled Per-phase, 2-out-of-3, Average
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones: Minimum pickup: Slope 1 range: Slope 2 range: Kneepoint 2: An harmonic inhibit function: 2nd harmonic inhibit function: 2nd harmonic inhibit function: Sth harmonic inhibits selected:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 9F LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 9T DIFFERENTIAL Differential Restraint pre-set 2 0.05 to 1.00 pu in steps of 0.001 15 to 100% in steps of 1% 10 to 2.0 pu in steps of 1% 10 to 2.0 pu in steps of 0.0001 1.0 to 4.0.0% in steps of 0.01 Adaptive, Traditional, Disabled Per-phase, 2-out-of-3, Average 1.0 to 40.0% in steps of 0.1
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones: Minimum pickup: Slope 1 range: Slope 2 range: Kneepoint 2: 2nd harmonic inhibit level: 2nd harmonic inhibit level: 2nd harmonic inhibit function: 2nd harmonic inhibit selected: No perate times: Harmonic inhibits selected: No harmonic inhibits	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 9F LIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 9T DIFEREMINIL Differential Restraint pre-set 2 0.05 to 1.00 pu in steps of 0.001 15 to 100% in steps of 1% 1.0 to 2.0 pu in steps of 0.0001 1.0 to 40.0% in steps of 0.0001 1.0 to 40.0% in steps of 0.01 Adaptive, Traditional, Disabled Per-phase, 2-out-of-3, Average 1.0 to 40.0% in steps of 0.1
TRANSFORMER HOTTE Operating quantity: Pickup level: Dropout level: Dropout level: Pickup delay: TRANSFORMER LOSS C Operating quantity: Pickup level: TRANSFORMER PERCEI Characteristic: Number of zones: Minimum pickup: Slope 1 range: Slope 2 range: Kneepoint 1: Kneepoint 1: Kneepoint 2: Znd harmonic inhibit function: 2nd harmonic inhibit function: Sth harmonic inhibits selected: No harmonic inhibits selected:	ST-SPOT TEMPERATURE computed temperature in °C 50 to 300°C in steps of 1 1°C below pickup 0 to 30000 min. in steps of 1 FLIFE computed accumulated transform loss of life, in hours 0 to 500000 hours in steps of 1 MT DIFFERENTIAL Differential Restraint pre-set 2 0.05 to 1.00 µu in steps of 0.001 15 to 100% in steps of 1% 1.0 to 2.0 µu in steps of 0.0001 2.0 to 30.0 µu in steps of 0.0001 1.0 to 40.0% in steps of 0.1 Adaptive, Traditional, Disabled Per-phase, 2-out-of-3, Average 1.0 to 40.0% in steps of 0.1

TRIP OUTPUT Collects trip and reclose	e input requests and issues outputs t
control tripping and recl	osing.
Communications timer delay:	0 to 65535 s in steps of 0.001
Evolving fault timer:	0.000 to 65.535 s in steps of 0.001
Timing accuracy: UNDERFREQUENCY	±3% or 4 ms, whichever is greater
Minimum signal:	0.10 to 1.25 pu in steps of 0.01
Pickup level:	20.00 to 65.00 Hz in steps of 0.01
Dropout level:	Pickup + 0.03 Hz
Level accuracy: Time delay:	±0.01 Hz 0 to 65.535 s in steps of 0.001
Timer accuracy:	±3% or 4 ms, whichever is greater
VOLTS PER HERTZ	
Voltage: Pickup level:	Phasor only 0.80 to 4.00 in steps of 0.01 pu V/H
Dropout level:	97 to 98% of Pickup
Level accuracy:	±0.02 pu
Timing curves:	Definite Time; Inverse A, B, and FlexCurves. A, B, C, and D
TD Multiplier:	0.05 to 600.00 s in steps of 0.01
Reset delay:	0.0 to 1000.0 s in steps of 0.1
Timing accuracy: VT FUSE FAIL	±3% or ± 4 ms (whichever is greate
Monitored parameters:	V 2, V 1, I 1
WATTMETRIC ZERO-SEC	QUENCE DIRECTIONAL
Measured Power	Zero-Sequence
Number of Elements: Characteristic Angle:	2 0 to 360° in steps of 1
Minimum Power:	0.001 to 1.20pu in steps of 0.001
Pickup Level Accuracy:	±1% or ± 0.0025 pu, whichever
Pickup Delay:	greater Definite time (0 to 600.00 s in step
richup Deluy.	of 0.01), inverse time, or FlexCurve
Inverse Time Multiplier:	: 0.01 to 2.00 s in steps of 0.01
Time Accuracy:	±3% or ±8 ms, whichever is greate
Operate Time:	<30 ms at 60 Hz
MONITORING	
DATA LOGGER	1 to 10
Number of channels: Parameters:	1 to 16 Any available analog actual value
Sampling rate:	15 to 3600000 ms in steps of 1
Trigger:	Any FlexLogic operand
Mode:	Continuous or Triggered
Storage capacity: 1-second rate:	(NN is dependent on memory) 01 channel for NN days
	16 channels for NN days
60-minute rate:	01 channel for NN days
EVENT RECORDER	16 channels for NN days
Capacity:	1024 events
Time-tag:	to 1 microsecond
Triggers:	to 1 microsecond Any element pickup dropout (
	to 1 microsecond Any element pickup, dropout o operate Digital input change of star
Triggers:	to 1 microsecond Any element pickup, dropout o operate Digital input change of stat Digital output change of state Sel test events
Triggers: Data storage:	to 1 microsecond Any element pickup, dropout of operate Digital input change of state Digital output change of state Sel
Triggers:	to 1 microsecond Any element pickup, dropout o operate Digital input change of stat Digital output change of state Sel test events
Triggers: Data storage: FAULT LOCATOR	to 1 microsecond Any element pickup, dropout of operate Digital input change of stat Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau
Triggers: Data storage: FAULT LOCATOR Method:	to 1 microsecond Any element pickup, dropout a operate Digital input change of star Digital output change of state Sel test events In non-volatile memory Single-ended Foult resistance is zero or fau currents from all line terminals a
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if:	to 1 microsecond Any element pickup, dropout of operate Digital input change of state Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase
Triggers: Data storage: FAULT LOCATOR Method:	to 1 microsecond Any element pickup, dropout o operate Digital input change of stat Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals an in phase ±1.5% (V > 10 V, I > 0.1 pu)
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy:	to 1 microsecond Any element pickup, dropout of operate Digital input change of stat Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals an in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data)
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy:	to 1 microsecond Any element pickup, dropout a operate Digital input change of stat Digital output change of state Sel test events In non-volatile memory Single-ended Foult resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data)
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy:	to 1 microsecond Any element pickup, dropout o operate Digital input change of stat Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fac currents from all line terminals au in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data)
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy:	to 1 microsecond Any element pickup, dropout of operate Digital input change of stat Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau- currents from all line terminals ar in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (user data) ZLine%error + (Lopater 6) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%)
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL	to 1 microsecond Any element pickup, dropout of operate Digital input change of stat Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau- currents from all line terminals and in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%) T DETECTION (HIZ)
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy:	to 1 microsecond Any element pickup, dropout a operate Digital input change of stat Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (Loser data) ZLine%error + (Loser data) METHOD%error + (Lopter 6) RELAY ACCURACY%error + (1.5%) T DETECTION (HZ)
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY	to 1 microsecond Any element pickup, dropout (operate Digital input change of stat Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (Lopter 6) RELAV ACCURACY%error + (1.5%) TO ETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY Maximum records:	to 1 microsecond Any element pickup, dropout of operate Digital input change of stat Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals and in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (user data) ZLine%error + (user data) METHOD%error + (Loser data) METHOD%error + (LS%) T DETECTION (HIZ) Arc Suspected, Arc Detected, Downee Conductor, Phase Identification 64
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY Maximum records: Sampling rate:	to 1 microsecond Any element pickup, dropout of operate Digital input change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau- currents from all line terminals au in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (user data) ZLine%error + (lser data) ZLine%error + (lseror data) ZLine%error + (lser data) ZLine%erro
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY Maximum records:	to 1 microsecond Any element pickup, dropout of operate Digital input change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau- currents from all line terminals au in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (user data) ZLine%error + (lser data) ZLine%error + (lseror data) ZLine%error + (lser data) ZLine%erro
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY Maximum records: Sampling rate:	to 1 microsecond Any element pickup, dropout a operate Digital input change of state Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (Chapter 6) RELAV ACCURACY%error + (1.5%) T DETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 somples per power cycle Any element pickup, dropout o operate Digital input change of state
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY Maximum records: Sampling rate:	to 1 microsecond Any element pickup, dropout of operate Digital input change of stat Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (user data) ZLine%error + (user data) METHOD%error + (Loser data) METHOD%error + (Loser data) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 Samples per power cycle Any element pickup, dropout of Digital output change of state Digital output change of state
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY Maximum records: Sampling rate:	to 1 microsecond Any element pickup, dropout a operate Digital input change of state Single-ended Fault resistance is zero or fau- currents from all line terminals au in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (user data) ZLine%error + (user data) METHOD%error + (1.5%) T DETECTION (HIZ) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any ElextAcgic Operand Digital input change of state Digital output change of state
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY Maximum records: Sampling rate:	to 1 microsecond Any element pickup, dropout of operate Digital input change of state Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (Loser data) ZLine%error + (user data) ZLine%error + (user data) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout of operate Digital input change of state Any FlexLogic Deprend FlexLogic Equation
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY Maximum records: Sampling rate: Triggers:	to 1 microsecond Any element pickup, dropout a operate Digital input change of state Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) CT%error + (user data) ZLine%error + (Loser data) ZLine%error + (Loser data) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout a operate Digital input change of state Digital output change of state Any FlexLogic Ceparand FlexLogic Equation AC input changels
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY Maximum records: Sampling rate: Triggers:	to 1 microsecond Any element pickup, dropout of operate Digital input change of stat Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (user data) ZLine%error + (user data) ZLine%error + (user data) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 Samples per power cycle Any element pickup, dropout of operate Digital input change of state Digital output change of state Any FlexLogic Operand FlexLogic Caperand FlexLogic Caperand FlexLogic Caperand FlexLogic Caperand FlexLogic Caperand FlexLogic Caperand FlexLogic Detented Digital input state
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY Maximum records: Sampling rate: Triggers: Data:	to 1 microsecond Any element pickup, dropout of operate Digital input change of state Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau- currents from all line terminals and in phase ±1.5% (V > 10 V, I > 0.1 pu) VT% error + (user data) ZLine% error + (user data) ZLine% error + (user data) ZLine% error + (user data) ZLine% error + (user data) T DETECTION (HIZ) Arc Suspected, Arc Detected, Downer Conductor, Phase Identification 64 64 samples per power cycle Any element pickup, dropout of operate Digital output change of state Digital output change of state Digital output state Digital input state Digital input state Digital output state
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY Maximum records: Sampling rate: Triggers: Data: Data storage:	to 1 microsecond Any element pickup, dropout of operate Digital input change of state Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (Loser data) ZLine%error + (Loser data) ZLine%error + (Loser data) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 64 samples per power cycle Any element pickup, dropout of operate Digital input change of state Any FlexLogic Operand FlexLogic Equation AC input channels Element state Digital input state
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY Maximum records: Sampling rate: Triggers: Data:	to 1 microsecond Any element pickup, dropout of operate Digital input change of state Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals a in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (Loser data) ZLine%error + (Loser data) ZLine%error + (Loser data) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 64 samples per power cycle Any element pickup, dropout of operate Digital input change of state Any FlexLogic Operand FlexLogic Equation AC input channels Element state Digital input state
Triggers: Data storage: FAULT LOCATOR Method: Maximum accuracy if: Relay accuracy: Worst-case accuracy: HIGH-IMPEDANCE FAUL Detections: OSCILLOGRAPHY Maximum records: Sampling rate: Triggers: Data: Data storage: USER-PROGRAMMABLE	to 1 microsecond Any element pickup, dropout of operate Digital input change of stat Digital output change of state Sel test events In non-volatile memory Single-ended Fault resistance is zero or fau currents from all line terminals of in phase ±1.5% (V > 10 V, I > 0.1 pu) VT%error + (user data) ZLine%error + (user data) Arc Suspected, Arc Detected, Downe Conductor, Phase Identification 64 64 Samples per power cycle Any element pickup, dropout of operate Digital input change of state Digital input change of state Digital input state Digital output state Digital output state Digital output state Digital output state In non-volatile memory FAULT REVORT

MONITORING PHASOR MEASUREMENT UNIT

Output format: Number of channels:	per IEEE C37.118 standard 14 synchrophasors, 16 analogs, 16 digitals
TVE (total vector error): Triggering:	
Reporting rate:	1, 2, 5, 10, 12, 15, 20, 25, 30, 50, 60 or 120 times per second
Number of clients:	One over TCP/IP port, two over UDP/ IP ports
TAC ranges:	As indicated in appropriate specifications sections
Network reporting format: Network reporting style:	16-bit integer or 32-bit IEEE floating point numbers Rectangular (real and imaginary) or polar (magnitude and angle) coordinates
Filtering: Calibration:	P and M class Angle ±5°, magnitude +/-5% per phase
Compensation:	-180 to 180° in steps of 30° (current and voltage components)
Mode of operation: PMU Recording:	Normal and test 46 configurable channels (14 syncrophasor, 16 digital, 16 analogs)
METERING	

RMS CURRENT: PHASE, NEUTRAL, AND GROUND

Accuracy at: 0.1 to 2.0 × CT rating:	±0.25% of reading or ±0.1% of rated
> 2.0 × CT rating:	(whichever is greater) ±1.0% of reading
RMS VOLTAGE	
Accuracy:	±0.5% of reading from 10 to 208 V
REAL POWER (WATTS)	-
Accuracy:	±1.0% of reading at -0.8 < PF < -1.0 and 0.8 < PF < 1.0
REACTIVE POWER (VARS)

±1.0% of reading at -0.2 < PF < 0.2

Accuracy:	±1.0% of reading at -0.2 < PF < 0.2
APPARENT POWER (VA)	
Accuracy:	±1.0% of reading
WATT-HOURS (POSITIVE	AND NEGATIVE)
Accuracy:	±2.0% of reading
Range:	±0 to 2 × 109 MWh
Parameters:	3-phase only
Update rate:	50 ms
VAR-HOURS (POSITIVE A	
Accuracy:	±2.0% of reading
Range:	±0 to 2 × 109 Mvarh
Parameters:	3-phase only
Update rate:	50 ms
CURRENT HARMONICS	
Harmonics:	2nd to 25th harmonic: per phase,
	displayed as a % of f1 (fundamental
	frequency phasor) THD: per phase,
	displayed as a % of f1
Accuracy:	
Harmonics:	 f1 > 0.4pu: (0.20% + 0.035% /
	harmonic) of reading or 0.15% of
	100%, whichever is greater
	2. f1 < 0.4pu: as above plus %error
	of f1
THD:	1. f1 > 0.4pu: (0.25% + 0.035% /
	harmonic) of reading or 0.20% of
	100%, whichever is greater
	2. f1 < 0.4pu: as above plus %error
	of f1
	0111
DEMAND Measurements:	Phases A. B. and C. present and
Measurements:	Phases A, B, and C present and
	maximum measured currents
	maximum measured currents 3-Phase Power (P, Q, and S) present
Measurements:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents
Measurements: Accuracy:	maximum measured currents 3-Phase Power (P, Q, and S) present
Measurements: Accuracy: FREQUENCY	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0%
Measurements: Accuracy: FREQUENCY Accuracy at	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used
Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement)
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz
Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu: I > 0.25 pu:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement)
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu: I > 0.25 pu:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase.
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % off 1 [cmadmenta]
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase,
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % off 1 [cmadmenta]
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % off 11
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu: (0.20% + 0.035% /
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu; (0.20% + 0.035% / harmonic) of reading or 0.15% of
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % off 11 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic; per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu; (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu; as above plus %error
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 1. f1 > 0.4pu; (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu; as above plus %error of f1
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu: (0.25% + 0.035% / 1. f1 > 0.4pu: (0.25% + 0.035% /
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy: Harmonics:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu; (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu; as above plus %error of f1 1. f1 > 0.4pu; (0.25% + 0.035% / harmonic) of reading or 0.20% of
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy: Harmonics:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu: (0.25% + 0.035% / 1. f1 > 0.4pu: (0.25% + 0.035% /
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy: Harmonics:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu; (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu; as above plus %error of f1 1. f1 > 0.4pu; (0.25% + 0.035% / harmonic) of reading or 0.20% of
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy: Harmonics:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic: per phase, displayed as a % off 11 1. f1 > 0.4pu: (0.20% + 0.035% / harmonic of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu: as above plus %error of f1 1. f1 > 0.4pu: (0.25% + 0.035% / harmonic) 0.25% + 0.035% / harmonic) 0.25% + 0.035% / harmonic) of neading or 0.20% of 100%, whichever is greater
Measurements: Accuracy: FREQUENCY Accuracy at V = 0.8 to 1.2 pu: I = 0.1 to 0.25 pu: I > 0.25 pu: VOLTAGE HARMONICS Harmonics: Accuracy: Harmonics:	maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents ±2.0% ±0.01 Hz (when voltage signal is used for frequency measurement) ±0.05 Hz ±0.02 Hz (when current signal is used for frequency measurement) 2nd to 25th harmonic; per phase, displayed as a % of f1 (fundamental frequency phasor) THD: per phase, displayed as a % of f1 1. f1 > 0.4pu; (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4pu; (0.25% + 0.035% / harmonic) of reading or 0.20% of 100%, whichever is greater 2. f1 < 0.4pu; 0.25% + 0.035% / harmonic) of reading or 0.20% of 100%, whichever is greater 2. f1 < 0.4pu; as above plus %error

LISER-PROGRAMMARI E ELEMENTS CONTROL PUSHBUTTONS Number of pushbuttons: Operation: FLEXCURVES Number: 4 (A through D) Reset points: Operate points: Time delay: FLEXLOGIC Reverse Polish Notation with graphical visualization (keypad Programming language: programmable) Lines of code: Internal variables 1024 128 Supported operations: AND (2 inputs), NAND (2 to 16 inputs), Latch (Reset Dominant), Edge Detectors Timers Inputs: Number of timers 64 Pickup delay: steps of 1 0 to 60000 (ms, sec., min.) in Dropout delay: steps of 1 FLEXELEMENTS Number of elements: Operating signal: Operating signal mode: Operating mode: Comparator direction: Over, Under Pickup Level: Hysteresis: Delta dt: Pickup & dropout delay: 0.001 **FLEXSTATES** Number: Programmability: virtual input LED TEST Initiation 3, interruptible at any time approximately 3 minutes Number of tests Duration of full test: Test sequence 1: all LEDs on Test sequence 2 Test sequence 3: off for 1 s NON-VOLATILE LATCHES Set-dominant or Reset-Type: dominant Number: Output: Execution sequence: SELECTOR SWITCH Number of elements Upper position limit: to 7 in steps of 1 Selecting mode: Time-out timer: Control inputs: Power-up mode: USER-DEFINABLE DISPLAYS Number of displays: Lines of display: Parameters: Invoking and scrolling: USER-PROGRAMMABLE LEDS Number: Programmability: Reset mode: Self-reset or Latched USER-PROGRAMMABLE PUSHBUTTONS (OPTIONAL) Number of pushbuttons: Mode: Display message: 8-BIT SWITCH Number of elements: Input signals:

Control Response time:

3 (standard). 16 (UR Enhanced HMI) or 8 plus 10 soft pushbuttons (UR color HMI) drive FlexLogic. operands 40 (0 through 1 of pickup) 80 (1 through 20 of pickup) 0 to 65535 ms in steps of 1

NOT. XOR. OR (2 to 16 inputs). to 16 inputs), NOR (2 to 16

any logical variable, contact, or virtual input 0 to 60000 (ms, sec., min.) in

any analog actual value, or two values in Differential mode Signed or Absolute Value Level, Delta -30.000 to 30.000 pu in steps of 0.001 0.1 to 50.0% in steps of 0.1 20 ms to 60 days 0.000 to 65.535 s in steps of

up to 256 logical variables grouped under 16 Modbus addresses any logical variable, contact, or from any digital input or user-programmable condition

all LEDs off. one LED at a time on for 1 s all LEDs on, one LED at a time

16 (individually programmed) Stored in non-volatile memory As input prior to protection, control, and FlexLogic.

Time-out or Acknowledge 3.0 to 60.0 s in steps of 0.1 step-up and 3-bit restore from non-volatile memory or synchronize to a 3-bit control input 2 × 20 alphanumeric characters up to 5, any Modbus register addresses keypad, or any user-programmable condition, including pushbuttons 48 plus Trip and Alarm (UR Alarm (UR Color HMI) from any logical variable, contact, or virtual input 13 (standard), 16 (UR Enhanced HMI) or 8 plus 10 soft pushbuttons (UR color HMI) Self-Reset, Latched 2 lines of 20 characters each

two 8-bit integers via FlexLogic operands any FlexLogic operand < 8 ms at 60 Hz, < 10 ms at 50 Hz

AC VOLTAGE VT rated secondary: VT ratio: Nominal frequency: Relay burden: Conversion range: Voltage withstand: CONTACT INPUTS Dry contacts: Wet contacts: Selectable thresholds. Tolerance: Contacts Per Common Return: Recognition time: Debounce timer: Continuous Current Draw: CONTACT INPUTS WITH AUTO-BURNISHING Dry contacts

±10%

INPUTS

AC CURRENT CT rated primary:

Relay burden:

CT rated secondary: Nominal frequency:

Conversion range: Standard CT:

Current withstand:

1 to 50000 A

1 A or 5 A by connection 20 to 65 Hz

Wet contacts: Selectable thresholds: ±10% Tolerance: Contacts Per Common Return: Recognition time: Debounce timer **Continuous Current** Draw: Auto-Burnish Impulse 50 to 70 mA Current: Duration of Auto-Burnish Impulse: DCMA INPUTS Current input (mA DC): Input impedance: Conversion range: Accuracy: Type: DIRECT INPUTS Number of input 32 points: No. of remote 16 devices: Default states on loss of comms.: Ring configuration: Data rate: CRC CRC alarm: Responding to: Monitoring message count: Alarm threshold Unreturned message Responding to: Monitoring message count: Alarm threshold: IRIG-B INPUT Amplitude modulation: DC shift: Input impedance: Isolation REMOTE INPUTS (IEC 61850 GSSE) Number of input points: Number of remote devices: Default states on loss of comms.: RTD INPUTS Types (3-wire): Sensing current: Range: Accuracy:

Isolation

< 0.2 VA at rated secondary 0.02 to 46 × CT rating RMS symmetrical Sensitive Ground/HI-Z CT module: 0.002 to 4.6 × CT rating RMS symmetrical 20 ms at 250 times rated 1 sec. at 100 times rated continuous at 3 times rated continuous 4x10 times rated with 24 CT inputs have a maximum operating temp. of 50°C 50.0 to 240.0 V 1.00 to 24000.00 20 to 65 Hz For the L90, the nominal system frequency should be chosen as 50 Hz or 60 Hz only. < 0.25 VA at 120 V to 275 V continuous at 260 V to neutral L min./hr at 420 V to neutra 1000 Ω maximum 300 V DC maximum 17 V, 33 V, 84 V, 166 V < 1 ms 0.0 to 16.0 ms in steps of 0.5 3mA (when energized) 1000Ω maximum 300 V DC maximum 17 V, 33 V, 84 V, 166 V < 1 ms 0.0 to 16.0 ms in steps of 0.5 3mA (when energized

25 to 50 ms

0 to -1, 0 to +1, -1 to +1, 0 to 5, 0 to 10, 0 to 20, 4 to 20 (programmable) 379 ±10% -1 to + 20 mA DC ±0.2% of full scale Passive

On. Off. Latest/Off. Latest/On

Yes, No 64 or 128 kbps 32-bit

Rate of messages failing the CRC 10 to 10000 in steps of 1

1 to 1000 in steps of 1 alarm: Rate of unreturned messages in the ring configuration 10 to 10000 in steps of 1

1 to 1000 in steps of 1

1 to 10 V pk-pk

22 kW

32, configured from 64 incoming bit pairs 16

On. Off. Latest/Off. Latest/On

100 Ω Platinum, 100 Ω & 120 Ω Nickel, 10 Ω Copper 5 mA -50 to +250°C ±2-C 36 V pk-pk

OUTPUTS					
CONTROL PO			OUTPUT		
Capacity: Isolation:		10	0 mA DC at 00 Vpk	48 V	DC
DCMA OUTP Range:	UTS	-1	to 1 mA 0 to	o 1 n	nA /i to 20 mA
Max. load re	sistance:	12 12	-1 to 1 mA, 0 to 1 mA, 4 to 20 mA 12 k for -1 to 1 mA range 12 k for 0 to 1 mA range 600 for 4 to 20 mA range		
Accuracy:		. 0	750/ 06 6.11		la far 0 ta 1 mA
99% Settling	a time to (rar ±0 rar ±0 rar	nge .5% of full-: nge	scale	le for 0 to 1 mA e for -1 to 1 mA e for 0 to 20 mA
step change		u 10	0 1115		
Isolation: Driving sign Upper & low the driving s	er limit fo	an	kV y FlexAnalog) to 90 pu in		
DIRECT OUT	PUTS				
Output poin FORM-A CUF	ts:				
Threshold cu FORM-A REL	urrent:		prox. 80 to 1	100 r	nA
Make & carr Carry contin	y for 0.2s: iuous:	6 A			
Break at L/R Operate tim	t of 40 ms	: 1 A 0.5 0.3 0.2	A DC max. at A DC max. A DC max. A DC max. M DC max.	at 48 at 12	3 V 25 V
Contact mat			/er alloy		
FORM-A VOL		NITOR	,	2501	100
Applicable v Trickle curre		ap	prox. 15 to 2 prox. 1 to 2.	250 V 5 mA	A DC
INPUT VO	LTAGE	200		EDAN	
250 V	DC	ZVV	RESISTOR 20 K		1W RESISTOR 50K
120 V			5 K		2 K
48 V [2 K		2 K
24 V [2 K		2 K
FORM-C ANI Make & carr Carry contin Break at L/R Operate tim Contact mat FAST FORM- Make & carr Minimum lou Operate tim Internal Lim Resistor:	y for 0.2 s nuous: a of 40 ms e: terial: C RELAY y: ad impede e:	:: 30 8 / 0.2 0.1 < 8 Silv 0.1 ance: < 0	A	. at 1	125 V
Make & carr Carry contin Break at L/R Operate tim Contact mai FAST FORM- Make & carr Minimum loo Operate tim Internal Lim Resistor: IRIG-B OUTP	y for 0.2 s nuous: c of 40 ms e: terial: C RELAY y: ad impede e: iting	:: 30 8 / : 0.2 0.1 < 8 Silv 0.1 0.1 0.1 0.1 0.1 0.1	A 5 A DC max 0 A DC max rer alloy . A max. (res 0, 6 ms 0, 2	istive	125 V e load)
Make & carr Carry contin Break at L/R Operate tim Contact mad FAST FORM- Make & carr Minimum loo Operate tim Internal Lim Resistor:	y for 0.2 s nuous: a of 40 ms e: terial: C RELAY y: ad impede e: iting	s: 30 8 / 2 0.2 0.1 < 8 Silv 0.1 ance: < 0 10 10 10 10	A 5 A DC max 0 A DC max rer alloy . A max. (res 0.6 ms 0, 2 V peak-pea 0 ohms ns for AM in	k RS4	125 V e load) 485 level
Make & carr Carry contin Break at L/R Operate tim Contact mad FAST FORM- Make & carr Minimum loo Operate tim Internal Lim Resistor: IRIG-B OUTP Amplitude: Maximum loo Time delay: Isolation: LATCHING R Make & carr	y for 0.2 s iuous: of 40 ms e: terial: C RELAY y: ad impede e: iting UT ad: ELAY y for 0.2 s uous:	:: 30 8 / : 0.2 0.1 < 8 Silv 0.1 ance: < 0 10 10 10 10 10 10 2 k : 30 6 /	A 5 A DC max o A DC max ims ver alloy A max. (res 6.6 ms 0, 2 V peak-pea 0 ohms ns for AM in µs for DC-si V A as per AN	k RS4 put SI C:	225 V 2 load) 485 level nput
Make & carr Carry contin Break at L/R Operate tim Contact mai FAST FORM- Make & carr Minimum loo Operate tim Internal Lim Resistor: IRIG-B OUTP Amplitude: Maximum lo Time delay: Isolation: LATCHING R Make & carr	y for 0.2 s incourse to f 40 ms e: terial: C RELAY y: ad impede e: iting UT ad: ELAY y for 0.2 s incourse to f 40 ms e: c RELAY y for 0.2 s incourse e: terial: to f 40 ms e: terial:	:: 30 8 / 0.1 8 / 5 ik 0.1 6 / 10 10 10 10 10 10 10 10 10 10 10 10 10	A 5 A DC max o A DC max rms ver alloy A max. (res 6 ms 0, 2 V peak-pea 0 ohms ns for AM in µs for DC-si V A as per AN 5 A DC max rms ver alloy orate oper erate-domi	k RS4 put hift ir s1 C:	125 V e load) 485 level nput 37.90
Make & carr Carry contin Break at L/R Operate tim Contact mai FAST FORM- Make & carr Minimum loo Operate tim Internal Lim Resistor: IRIG-B OUTP Amplitude: Isolation: LATCHING R Make & carr Carry contin Break at L/R Operate tim Control: Control: Control: Control: Control data REMOTE OU Standard ou User output	y for 0.2 s uous: c of 40 ms e: terial: C RELAY y: ad impede e: titing UT ad: ELAY y for 0.2 s uous: c of 40 ms e: terial: le: TPUTS (IEC tput points:	:: 30 :: 0.2.2 :: 0.1.1 :: 0.1.1 :: 0.1.1 :: 0.1.1 :: 0.1.1 :: 0.1.1 :: 0.2.1 :: 0.2.1 :: 0.2.2 <	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms on for AM in ups for DC-si V A as per AN 5 A DC max ver alloy oprate operar erate-dominiant	k RS4 put hift ir s1 C:	125 V e load) 485 level nput 37.90
Make & carr Carry contin Break at L/R Operate tim Contact mad FAST FORM- Make & carr Minimum loo Operate tim Internal Lim Resistor: IRIG-B OUTP Amplitude: Maximum loo Time delay: Isolation: LATCHING R Make & carr Make & carr Make & carr Carry contin Break at L/R Operate tim Contact mad Control: Control mod REMOTE OU Standard ou	y for 0.2 s uous: of 40 ms e: terial: C RELAY y: ad impede e: iting UT ad: UT ELAY y for 0.2 s uous: of 40 ms e: terial: le: TPUTS (IE(trut poin points: E OUTPUT	 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms ns for AM in ys for DC-si V A as per AN 5 A DC max rms 5 A DC max reratloy oarate oper rerate-dominiant 0 GSSE) 00 µs	k RS4 put hift ir s1 C:	125 V e load) 485 level nput 37.90
Make & carr Carry contin Break at L/R Operate tim Contact mai FAST FORM- Make & carr Minimum loo Operate tim Internal Lim Resistor: IRIG-B OUTP Amplitude: Isolation: LATCHING R Make & carr Carry contin Break at L/R Operate tim Control: Control: Control: Control: Control mod REMOTE OU Standard ou User output SoLID-STATI Operate & fr	y for 0.2 s uous: to f 40 ms e: terial: C RELAY y: ad impede e: ting UT ad: ELAY y for 0.2 s uous: to f 40 ms e: ELAY y: to f 40 ms e: EUTUTS (IEC tput points: E OUTPUT elease tim plage	 30 (0.1) 31 (0.1) 32 (0.1)<	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms ns for AM in jus for DC-si V A as per AN 5 A DC max ims ver alloy arrate oper arrate-domi minant 0 GSSE 00 µs 5 V DC	k RS4 hift ir SI C: ate a	125 V a load) 485 level nput 37.90 ind reset inputs t or reset-
Make & carr Carry contin Break at L/R Operate tim Contact mai FAST FORM- Make & carr Minimum loo Operate tim Internal Lim Resistor: IRIG-B OUTP Amplitude: Maximum lo Time delay: Isolation: LATCHING R Make & carr Carry contin Break at L/R Operate tim Control: Control mod REMATE OU User output SOLID-STATI Operate & re Maximum vc current: Make & carr Maximum vc Control Solidors Control Solidors Control Maximum vc Control Toperate & re Maximum vc Current: Make & carr For 0.3s:	y for 0.2 s unous: tof 40 ms e: terial: C RELAY y: ad impede e: iting UT ad: ELAY y for 0.2 s unous: tof 40 ms e: terial: le: TPUTS (IEC TPUTS	:: 30 0 8 7 4 8 7 4	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pea 0 ohms ns for AM in ys for DC-si V A as per AN 5 A DC max rms 5 A DC max reratloy oarate oper rerate-dominiant 0 GSSE) 00 µs	k RS4 hift ir SI C: ate a inan	125 V e load) 485 level nput 37.90 ind reset inputs t or reset- 65°C
Make & carr Carry contin Break at L/R Operate tim Contact mail FAST FORM- Make & carr Minimum loo Operate tim Internal Lim Resistor: IRIG-B OUTP Amplitude: Maximum lo Time delay: Isolation: LATCHING R Make & carr Carry contin Break at L/R Operate tim Control: Control mod REMOTE OU Standard ou User output SoLID-STATI Operate & carr Courrent: Maximum co current:	y for 0.2 s unous: tof 40 ms e: terial: C RELAY y: ad impede e: iting UT ad: ELAY y for 0.2 s unous: tof 40 ms e: terial: le: TPUTS (IEC TPUTS	:: 30 0 8 7 4 8 7 4	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pead 0 ohms ns for AM in ys for DC-si V A as per AN 5 A DC max ims 5 A DC max ims 5 A DC max ims 5 A DC max ims 5 A DC max ims 0 ohms 5 A DC max ims 10 ohms 5 A DC max ims 10 ohms 5 A DC max ims 10 ohms 5 A DC max ims 10 ohms 10 o	k RS4 hift ir SI C: ate a inan	125 V e load) 485 level aput 37.90 Ind reset inputs t or reset- 65°C
Make & carr Carry contin Break at L/R Operate tim Contact mai FAST FORM- Make & carr Minimum loo Operate tim Internal Lim Resistor: IRIG-B OUTP Amplitude: Maximum lo Time delay: Isolation: LATCHING R Make & carr Carry contin Break at L/R Operate tim Control: Control mod REMATE OU User output SOLID-STATI Operate & re Maximum vc current: Make & carr Maximum vc Control Solidors Control Solidors Control Maximum vc Control Toperate & re Maximum vc Current: Make & carr For 0.3s:	y for 0.2 s uous: c of 40 ms e: terial: C RELAY y: ad impede e: iting UT ad: ELAY y for 0.2 s uous: c of 40 ms e: terial: le: TPUTS (IEC tput poin points: e OUTPUT elease timoltage: ontinuous y for 0.2 s pacity: IEC 647-57	:: 30 0 8 / A / C / C / C / C / C / C / C / C / C	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pead 0 ohms ns for AM in us for DC-si V A as per AN 5 A DC max ims 5 A DC max ims 10 ohms 5 A DC max ims 5 A DC max ims 10 ohms 5 A DC max ims 10 ohms 10 o	k RS- put hift ir ISI C: ate a in an	125 V e load) 485 level aput 37.90 Ind reset inputs t or reset- 65°C
Make & carr Carry contin Break at L/R Operate tim Contact mai FAST FORM- Make & carr Minimum loo Operate tim Internal Lim Resistor: IRIG-B OUTP Amplitude: Isolation: LATCHING R Make & carr Carry contin Break at L/R Operate tim Control: Control mod REMOTE OU Standard ou User output SOLID-STATI Operate & carr For 0.3s: Breaking ca	y for 0.2 s uous: c of 40 ms e: terial: C RELAY y: ad impede e: iting UT ad: ELAY y for 0.2 s uous: c of 40 ms e: terial: le: TPUTS (IEC tput poin points: e OUTPUT elease timoltage: ontinuous y for 0.2 s pacity: IEC 647-57	:: 30 0 8 / A / C / C / C / C / C / C / C / C / C	A 5 A DC max 5 A DC max ims ver alloy A max. (res 6 ms 0, 2 V peok-pea 0 ohms ns for AM in µs for DC-si V A as per AN 5 A DC max ims er alloy orate operate- doms 5 V DC a at 45°C; 4 / per ANSI C3 0 A UTILITY APPLICATIC (AUTORECO S and CALLER A as per ANSI C3 0 A	k RS- put hift ir ISI C: ate a in an	L25 V a load) 485 level hput 37.90 ind reset inputs t or reset- 65°C INDUSTRIAL APPLICATION 10000 orse(
Make & carr Carry contin Break at L/R Operate tim Contact mai FAST FORM- Make & carr Minimum loo Operate tim Internal Lim Resistor: IRIG-B OUTP Amplitude: Maximum lo Time delay: Isolation: LATCHING R Make & carr Carry contin Break at L/R Operate tim Control: Control mod REMATE OU User output SOLID-STATI Operate & re Maximum vc current: Make & carr Maximum vc Control Solidors Control Solidors Control Maximum vc Control Toperate & re Maximum vc Current: Make & carr For 0.3s:	y for 0.2 s uuous: c of 40 ms e: terial: C RELAY y: ad impede e: iting UUT ad: ELAY y for 0.2 s uuous: c of 40 ms e: terial: E OUTPUT elease tim points: E OUTPUT elease tim points; points; b of 2 s tage 1 for 0.2 s terial: E OUTPUT elease tim points; points; b of 0 of 0.2 s tage 1 for 0.2 s terial: E OUTPUT elease tim points; for 0.2 s tage 1 for 0.2 s tage 1 f	:: 30 :: 0.2 :: 0.2 :: 0.2 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.1 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.2 :: 0.3 :: 0.3 :: 0.3 :: 0.3 :: 0.3 :: 0.3 <	A 5 A DC max 0 A DC max ims ver alloy A max. (res 1.6 ms 0, 2 V peak-pead 0 ohms ns for AM in us for DC-si V A as per AN 5 A DC max ims 5 A DC max ims 10 ohms 5 A DC max ims 5 A DC max ims 10 ohms 5 A DC max ims 10 ohms 10 o	k RS- put hift ir ISI C: ate a in an	L25 V e load) 485 level nput 37.90 ind reset inputs t or reset- 65°C INDUSTRIAL APPLICATION

COMMUNICATIONS						
RS232			10		1 0 o T 1	0110 7 0
Front por	t:		19.	19.2 kbps, Modbus® RTU, DNP 3.0		
RS485 1 or 2 rear ports:		Up to 115 kbps, Modbus® RTU, DNP 3.0 isolated together at 36 Vpk				
Typical di	stance:		12(2 k	00 m		
FTHFRNF			<u> </u>	v		
Up to Three 100Base-F:		hal	L0 nm, mul f-duplex/fu h ST or LC (III-duplex f	ipports iber optic	
Power bu	dget:		10			
Max optical input power:		-14 dBm				
Max optical output		00.15				
power:			-20 dBm -30 dBm			
Receiver sensitivity:			-30 dBm 2 km			
Typical distance: Redundabcy:			t-stanby, Pi	DD		
		Twisted pair, RJ45 connector				
SNTP Clock (redundant)		<10 ms (typical)				
	zation erro		<1(лы цурісс	,11)	
PROTOCOLS						
	RS232	RS48	35	10BaseF	10BaseT	100BaseT
IEC 61850				•	•	•
DNP 3.0	•	•		•	•	•
Modbus	•	•		•	•	•
IEC104				•	•	•

INTER-RELAY COMMUNICATIONS SHIELDED TWISTED-PAIR INTERFACE OPTIONS		
INTERFACE TYPE	TYPICAL DISTANCE	
RS422	1200m	
G.703	100m	

.

•

•

 \ast NOTE: RS422 distance is based on transmitter power and does not take into consideration the clock source provided by the user.

LINK POWER BUDGET

EGD

EMITTER, FIBER TYPE	TRANSMIT POWER	RECEIVED SENSITIVITY	POWER BUDGET
820nm LED Multimode	-20dBm	-30dBm	10dB
1300 nm LED Multimode	-21dBm	-30dBm	9dB
1300 nm ELED Multimode	-21dBm	-30dBm	9dB
1300 nm Laser Singlemode	-1dBm	-30dBm	29dB
1550 nm Laser Singlemode	+5dBm	-30dBm	35dB

* NOTE: These power budgets are calculated from the manufacturers' worst-case transmitter power and worst-case receiver sensitivity.

MAXIMUM OPTICAL INPUT POWER

EMITTED, FIBER TYPE	MAX. OPTICAL INPUT POWER
820 nm LED, Multimode	-7.6 dBm
1300 nm LED, Multimode	-11 dBm
1300 nm ELED, Singlemode	-14 dBm
1300 nm Laser, Singlemode	-14 dBm
1500 nm Laser, Singlemode	-14 dBm

TYPICAL LINK DISTANCE

EMITTED TYPE	FIBER TYPE	CONNECTOR TYPE	TYPICAL DISTANCE	
820 nm LED	Multimode	-7.6 dBm	1.65 km	
1300 nm LED	Multimode	-11 dBm	3.8 km	
1300 nm ELED	Singlemode	-14 dBm	11.4 km	
1300 nm Laser	Singlemode	-14 dBm	64 km	
1500 nm Laser	Singlemode	-14 dBm	105 km	

assumptions for system lo	is listed are based on the following bass. Actual losses will vary from one e distance covered by your system
may vary.	
CONNECTOR LOSSES (TOT	TAL OF BOTH ENDS)
ST connector	2dB
FIBER LOSSES	
	3 dB/km 1 dB/km 0.35 dB/km 0.25 dB/km One splice every 2 km, at 0.05 dB loss per splice
SYSTEM MARGIN	
3 dB additional loss adde all other losses.	d to calculations to compensate for
Compensate difference in asymmetry) channel delay	transmitting and receiving (channel 's using GPS satellite clock: 10 ms
POWER SUPPLY	
LOW RANGE	
Nominal DC voltage: 24	
Min/may DC voltage: 20	/ 60 V

INTER-RELAY COMMUNICATIONS

24 to 48 V at 3 A 20 / 60 V
Low range is DC only.
• <i>,</i>
125 to 250 V at 0.7 A 88 / 300 V 100 to 240 V at 50/60 Hz, 0.7 A
88 / 265 V at 25 to 100 Hz
2 × Highest Nominal Voltage for 10 ms 50 ms duration at nominal Typical = 15 VA; Max. = 30 VA
8 A / 250 V
4 A / 250 V
ITY
100 000 A RMS symmetrical 10 000 A 200 ms

TYPE TESTS

Electrical fast transient:	ANSI/IEEE C37.90.1
	IEC 61000-4-4
	IEC 60255-22-4
Oscillatory transient:	ANSI/IEEE C37.90.1
···· · · · · · · · · · · · · · · · · ·	IEC 61000-4-12
Insulation resistance:	IEC 60255-5
Dielectric strength:	IEC 60255-6
<u> </u>	ANSI/IEEE C37.90
Electrostatic discharge:	EN 61000-4-2
Surge immunity:	EN 61000-4-5
RFI susceptibility:	ANSI/IEEE C37.90.2
	IEC 61000-4-3
	IEC 60255-22-3
	Ontario Hydro C-5047-77
Conducted RFI:	IEC 61000-4-6
Voltage dips/interruption	s/variations:
	IEC 61000-4-11
	IEC 60255-11
Power frequency magnet	ic field immunity:
	IEC 61000-4-8
Vibration test	IEC 60255-21-1
(sinusoidal):	
Shock and bump:	IEC 60255-21-2
* NOTE:	Type test report available upon
	request.

PRODUCTION TESTS THERMAL Products go through an environmental test based upon an

accepted quality level (AQI	L) sampling process
ENVIRONMENTAL	
OPERATING TEMPERATURES	
Cold:	IEC 60028-2-1, 16 h at -40°C
Dry Heat:	IEC 60028-2-2, 16 h at +85°C
OTHER	
Humidity(noncondensing):	
	IEC 60068-2-30, 95%, Variant 1,6days.
Altitude:	Up to 2000 m
Installation Category:	п
APPROVALS	
UL Listed for the USA and Canada Manufactured under an ISO9000 registered system.	

LVD 73/23/EEC: IEC 1010-1 CE EMC 81/336/EEC: EN 50081-2, EN 50082-2

IEC is a registered trademark of Commission Electrotechnique Internationale. IEEE is a registered trademark of the Institute of Electrical Electronics Engineers, Inc. Modbus is a registered trademark of Schneider Automation. NERC is a registered trademark of North American Electric Reliability Council. NIST is a registered trademark of the National Institute of Standards and Technology.

GE, the GE monogram, Multilin, FlexLogic, EnerVista and CyberSentry are trademarks of General Electric Company.

GE reserves the right to make changes to specifications of products described at any time without notice and without obligation to notify any person of such changes.

Copyright 2020, General Electric Company. All Rights Reserved.

Break

capability 0 to 250 VDC

3.2 A L/R = 10

1.6 A L/R = 20

0.8 AL/R = 40

10 A L/R = 40 ms

10 A L/R = 40 ms